Forwarding is a major means of information dissemination on the Microblog platform.The article,combining static analysis and dynamic analysis,takes Microblog forwarding as the object of study,and studies the network t...Forwarding is a major means of information dissemination on the Microblog platform.The article,combining static analysis and dynamic analysis,takes Microblog forwarding as the object of study,and studies the network topology of grass-roots Microblog forwarding users.It also studies the correlation between characteristic quantity and forwarding times of Microblog network topology.Furthermore,it conducts modification on virus transmission model,builds and verifies the Microblog forwarding dynamical model.The study finds out that Microblog postings present qute strong dissemination capacity on the initial stage,and some Microblog postings with many forwarding times and long duration of forwarding process due to the dynamic growth of the forwarding user network and the joining of strong nodes make network infection density decrease in some phases.展开更多
In the paper, we concentrate on the infl uence of heterogeneity on the performance of forwarding algorithms under opportunistic networks. Therefore, we first describe two different heterogeneous network models, and ca...In the paper, we concentrate on the infl uence of heterogeneity on the performance of forwarding algorithms under opportunistic networks. Therefore, we first describe two different heterogeneous network models, and capture the heterogeneity which concern mobile nodes' contact dynamics under the individual models and the spatial models. Then we investigate inter-contact time is not fully follow exponential distribution and compare the performance of the delivery delay between direct forwarding protocol and three-hop forwarding protocol under three network models. We illustrate the performance of message delivery delay under the spray and wait protocol and prophet protocol from simulation results. Our simulation results show that the heterogeneity should be considered for the performance of forwarding protocols.展开更多
Recent researches show that inter-session network coding could decrease the number of packets transmission and achieve higher throughput in wireless network compared with traditional forwarding mechanism. In most exis...Recent researches show that inter-session network coding could decrease the number of packets transmission and achieve higher throughput in wireless network compared with traditional forwarding mechanism. In most existing relay mechanisms based on inter-session network such as COPE, relay node demands to collect the messages from its neighbor nodes to get notice of which packets already overheard by them so as to determine whether there exists coding opportunity between or among forwarding packets. However, transmission overhead of this message collection and computing cost of opportunity determination will degrade the performance of these mechanisms. It is observed that coding opportunity at relay node is much more related with the local topology, and the opportunity of encoding three or more packets together is far less than that of encoding two packets together in wireless network with general density. Based on this, a new coding-aware routing mechanism, named TCAR, is proposed. TCAR ignores the oppommity of encoding three or more than three packets together. Each relay node maintains an encoding mapping table being established according to the result of its local topology detection, which can be used to calculate the path cost during routing setup phase, and determine that which two packets can be encoded together during the packets forwarding phase. In TCAR, instead of periodic messages collection, each relay nodes just need once local topology detection, and the encoding determination is much simpler than that of the former mechanisms. Simulation results show that compared with typical inter-session network coding mechanisms COPE and COPE-based routing, TCAR achieves 12% and 7% throughput gains, and keeps the minimum end to end delay.展开更多
Physical-layer network coding(PNC) promises substantial theoretical gain to achieve the maximum system throughput in cooperative relay transmission. However, with the increasing global warming, how to reduce power con...Physical-layer network coding(PNC) promises substantial theoretical gain to achieve the maximum system throughput in cooperative relay transmission. However, with the increasing global warming, how to reduce power consumption while satisfy system throughput requirement is becoming a vital issue. In this paper, we investigate energy-efficiency resource allocation(RA) based on PNC with amplify-and-forward(AF) protocol in orthogonal frequency division multiple(OFDM) bidirectional transmission. To minimize the overall transmit power consumption with required system throughput requirement, we consider joint subcarriers and power allocation and formulate the objective task into a constrained optimization problem where the best relay node is selected to minimize total transmit power. The closed form optimization power allocation solutions are acquired by analytical derivation. Based on derivation, we propose a novel optimal energy-efficient power allocation(OE-PA). Numerical results are given to evaluate the performance of the derived scheme as compared to other schemes and show that our scheme has signifi cant improvement to energy saving.展开更多
This paper provides an analytic performance evaluation of dual-hop cognitive amplify-and-forward (AF) relaying networks over independent nonidentically distributed (i.n.i.d.) fading channels. Two different transmit po...This paper provides an analytic performance evaluation of dual-hop cognitive amplify-and-forward (AF) relaying networks over independent nonidentically distributed (i.n.i.d.) fading channels. Two different transmit power constraint strategies at the secondary network are proposed to investigate the performance of the secondary network. In the case of combined power constraint,the maximum tolerable interference power on the primary network and the maximum transmit power at the secondary network are considered. Closed-form lower bound and its asymptotic expression for the outage probability (OP) are achieved. Utilizing the above results,average symbol error probability (ABEP) at high signal-to-noise ratios (SNRs) are also derived. In order to further study the performance of dual-hop cognitive AF relaying networks,the Closed-form lower bounds and asymptotic expressions for OP with single power constraint of the tolerable interference on the primary network is also obtained. Both analytical and simulation are employed to validate the accuracy of the theoretical analysis. The results show that the secondary network obtains a better performance when higher power constraint is employed.展开更多
The highly mobility of vehicles, intermittent communication between the vehicles and the requirements of real time applications are some of the main challenges of multi-hop message delivery in Vehicular Ad Hoc Networ...The highly mobility of vehicles, intermittent communication between the vehicles and the requirements of real time applications are some of the main challenges of multi-hop message delivery in Vehicular Ad Hoc Networks ( VANETs ). There are also additional challenges, especially when the destination for the message delivery is a moving vehicle. In this paper, we propose a novel multihop message delivery method, called the Coverage Area-based oPportunistic message forwarding algorithm (CAP). The main idea of CAP is to cover the potential area of a moving target vehicle as much as possible with the reachable area of the required delivery messages, so that the message can be delivered successfully. Because the success ratio and overhead of the multi-hop message delivery are two important but incompatible parameters in CAP, two tunings are discussed in the algorithm in order to maintain the balance of the two parameters. The simulation results show that compared with other reference approaches, CAP provides an efficient message delivery with a higher success ratio and a shorter message deNNy.展开更多
In this paper, we propose and evaluate outage performance of a mixed amplify-and-forward(AF) and decode-and-forward(DF) relaying protocol in underlay cognitive radio. Different from the conventional AF and DF protocol...In this paper, we propose and evaluate outage performance of a mixed amplify-and-forward(AF) and decode-and-forward(DF) relaying protocol in underlay cognitive radio. Different from the conventional AF and DF protocols, in the proposed protocol, a secondary source attempts to transmit its signal to a secondary destination with help of two secondary relays. One secondary relay always operates in AF mode, while the remaining one always operates in DF mode. Moreover, we also propose a relay selection method, which relies on the decoding status at the DF relay. For performance evaluation and comparison, we derive the exact and approximate closedform expressions of the outage probability for the proposed protocol over Rayleigh fading channel. Finally, we run Monte Carlo simulations to verify the derivations. Results presented that the proposed protocol obtains a diversity order of three and the outage performance of our scheme is between that of the conventional underlay DF protocol and that of the conventional underlay AF protocol.展开更多
Long Term Evolution(LTE) and IEEE 802.16 WiMAX are competing access network technologies adopted in 4G wireless networks in recent years.LTE complies with3 GPP standards whereas 802.16 WiMAX is regulated by the Instit...Long Term Evolution(LTE) and IEEE 802.16 WiMAX are competing access network technologies adopted in 4G wireless networks in recent years.LTE complies with3 GPP standards whereas 802.16 WiMAX is regulated by the Institute of Electrical and Electronics Engineers(IEEE).Although WiMAX is already operating commercially in Taiwan,the system is limited to an independent new system that is incompatible with the current 3G system.Hence,the cost of implementing the WiMAX system is relatively high,this being an impediment to its rapid uptake and widespread use.On the other hand,LTE conforms to 3GPP that is supported by telecommunication manufacturers and operators and is,moreover,backward compatible with 3G/UMTS cellular systems.The LTE specifications define how user equipment(UE) connects and communicates with evolved Node B(eNB) base stations.The enhanced version,LTE-Advanced,adds a new entity called the relay node(RN) to widen service coverage,although this change has resulted in a more complex architecture.Mobility management and data forwarding are essential components in wireless mobile networking.This paper focuses on the efficient handover procedure in LTE-Advanced networks,and proposes a Smart Forwarding mechanism to improve the handover performance.Simulation studies show that the proposed Smart Forwarding scheme employs a better operational transmission path that effectively reduces handover latency and signal overhead.展开更多
By allowing routers to combine the received packets before forwarding them,network coding-based applications are susceptible to possible malicious pollution attacks.Existing solutions for counteracting this issue eith...By allowing routers to combine the received packets before forwarding them,network coding-based applications are susceptible to possible malicious pollution attacks.Existing solutions for counteracting this issue either incur inter-generation pollution attacks(among multiple generations)or suffer high computation/bandwidth overhead.Using a dynamic public key technique,we propose a novel homomorphic signature scheme for network coding for each generation authentication without updating the initial secret key used.As per this idea,the secret key is scrambled for each generation by using the generation identifier,and each packet can be fast signed using the scrambled secret key for the generation to which the packet belongs.The scheme not only can resist intra-generation pollution attacks effectively but also can efficiently prevent inter-generation pollution attacks.Further,the communication overhead of the scheme is small and independent of the size of the transmitting files.展开更多
Network Coding (NC) brings correlation between the coded signals from different sources, which makes the system more vulnerable to the decode error at relay. Conventional Cyclic Redundancy Code (CRC) has been implemen...Network Coding (NC) brings correlation between the coded signals from different sources, which makes the system more vulnerable to the decode error at relay. Conventional Cyclic Redundancy Code (CRC) has been implemented for error bit detection. However, its error correction is simply ignored. To fully exploit this feature, this paper proposes a novel joint Log-Likelihood Ratio (LLR) CRC error mitigation for NC two way relay channel. Specific thresholds are designed to estimate the error number of data block and identify those which can be recovered if the number is within the error correction scope of CRC. We examine two modes of the thresholds, one based on the average Bit Error Rate (BER) of source-relay link, while the other based on that of instantaneous one. We provide the full analysis for the Pair-wise Error Probability (PEP) performance of the scheme. A variety of numerical results are presented to reveal the superiority of the proposed scheme to conventional CRC NC under independent Rayleigh fading channels. Moreover, the efficiencies of the proposed thresholds are also validated.展开更多
This work proposes a 12 kW three-phase grid-connected single stage PWM DC-AC converter destined to process the energy provided by a photovoltaic array composed of 57 KC200GT PV modules with high power factor for any s...This work proposes a 12 kW three-phase grid-connected single stage PWM DC-AC converter destined to process the energy provided by a photovoltaic array composed of 57 KC200GT PV modules with high power factor for any solar radiation. The PWM inverter modeling and the control strategy, using dqO transformation, are proposed in order to also allow the system operation as an active power filter, capable to compensate harmonic components and react power generated by the non-linear loads connected to the mains grid. An input voltage clamping technique is proposed to impose the photovoltaic operation on the maximum power point. Simulation and experimental results are presented to validate the proposed methodology for grid connected photovoltaic generation system.展开更多
Network function virtualization (NFV) is a newly proposed technique designed to construct and manage network fimctions dynamically and efficiently. Allocating physical resources to the virtual network function forwa...Network function virtualization (NFV) is a newly proposed technique designed to construct and manage network fimctions dynamically and efficiently. Allocating physical resources to the virtual network function forwarding graph is a critical issue in NFV. We formulate the forwarding graph embedding (FGE) problem as a binary integer programming problem, which aims to increase the revenue and decrease the cost to a service provider (SP) while considering limited network resources and the requirements of virtual functions. We then design a novel regional resource clustering metric to quantify the embedding potential of each substrate node and propose a topology-aware FGE algorithm called 'regional resource clustering FGE' (RRC-FGE). After implementing our algorithms in C++, simulation results showed that the total revenue was increased by more than 50 units and the acceptance ratio by more than 15%, and the cost of the service provider was decreased by more than 60 units.展开更多
The optimization of the network throughput and transmission range is one of the most important issues in cognitive relay networks (CRNs). Existing research has focused on the dual-hop network, which cannot be extend...The optimization of the network throughput and transmission range is one of the most important issues in cognitive relay networks (CRNs). Existing research has focused on the dual-hop network, which cannot be extended to a triple-hop network due to its shortcomings, including the limited transmission range and one-way communication. In this paper, a novel, triple-hop relay scheme is proposed to implement time-division duplex (TDD) transmission among secondary users (SUs) in a three-phase transmission. Moreover, a superposition coding (SC) method is adopted for handling two-receiver cases in triple-hop networks with a cognitive relay. We studied a joint optimization of time and power allocation in all three phases, which is formulated as a nonlinear and concave problem. Both analytical and numerical results show that the proposed scheme is able to improve the throughput of SUs, and enlarge the transmission range of primary users (PUs) without increasing the number of hops.展开更多
基金The research is supported by National Basic Research Program of China (973 Program),Project of National Natural Science Foundation of China,the Fundamental Research Funds for the Central Universities (2013RC0603)."
文摘Forwarding is a major means of information dissemination on the Microblog platform.The article,combining static analysis and dynamic analysis,takes Microblog forwarding as the object of study,and studies the network topology of grass-roots Microblog forwarding users.It also studies the correlation between characteristic quantity and forwarding times of Microblog network topology.Furthermore,it conducts modification on virus transmission model,builds and verifies the Microblog forwarding dynamical model.The study finds out that Microblog postings present qute strong dissemination capacity on the initial stage,and some Microblog postings with many forwarding times and long duration of forwarding process due to the dynamic growth of the forwarding user network and the joining of strong nodes make network infection density decrease in some phases.
基金supported by the National Natural Science Foundation of China under Grant No.61171097
文摘In the paper, we concentrate on the infl uence of heterogeneity on the performance of forwarding algorithms under opportunistic networks. Therefore, we first describe two different heterogeneous network models, and capture the heterogeneity which concern mobile nodes' contact dynamics under the individual models and the spatial models. Then we investigate inter-contact time is not fully follow exponential distribution and compare the performance of the delivery delay between direct forwarding protocol and three-hop forwarding protocol under three network models. We illustrate the performance of message delivery delay under the spray and wait protocol and prophet protocol from simulation results. Our simulation results show that the heterogeneity should be considered for the performance of forwarding protocols.
基金Projects(61173169,61106036)supported by the National Natural Science Foundation of ChinaProject(NCET-10-0798)Program for New Century Excellent Talents in University,China
文摘Recent researches show that inter-session network coding could decrease the number of packets transmission and achieve higher throughput in wireless network compared with traditional forwarding mechanism. In most existing relay mechanisms based on inter-session network such as COPE, relay node demands to collect the messages from its neighbor nodes to get notice of which packets already overheard by them so as to determine whether there exists coding opportunity between or among forwarding packets. However, transmission overhead of this message collection and computing cost of opportunity determination will degrade the performance of these mechanisms. It is observed that coding opportunity at relay node is much more related with the local topology, and the opportunity of encoding three or more packets together is far less than that of encoding two packets together in wireless network with general density. Based on this, a new coding-aware routing mechanism, named TCAR, is proposed. TCAR ignores the oppommity of encoding three or more than three packets together. Each relay node maintains an encoding mapping table being established according to the result of its local topology detection, which can be used to calculate the path cost during routing setup phase, and determine that which two packets can be encoded together during the packets forwarding phase. In TCAR, instead of periodic messages collection, each relay nodes just need once local topology detection, and the encoding determination is much simpler than that of the former mechanisms. Simulation results show that compared with typical inter-session network coding mechanisms COPE and COPE-based routing, TCAR achieves 12% and 7% throughput gains, and keeps the minimum end to end delay.
基金supported by the Science Instrument Special Funds of the National Natural Science Foundation of China under Grant No.61027003the National High Technology Research and Development Program of China under Grant No.2012AA01A50604
文摘Physical-layer network coding(PNC) promises substantial theoretical gain to achieve the maximum system throughput in cooperative relay transmission. However, with the increasing global warming, how to reduce power consumption while satisfy system throughput requirement is becoming a vital issue. In this paper, we investigate energy-efficiency resource allocation(RA) based on PNC with amplify-and-forward(AF) protocol in orthogonal frequency division multiple(OFDM) bidirectional transmission. To minimize the overall transmit power consumption with required system throughput requirement, we consider joint subcarriers and power allocation and formulate the objective task into a constrained optimization problem where the best relay node is selected to minimize total transmit power. The closed form optimization power allocation solutions are acquired by analytical derivation. Based on derivation, we propose a novel optimal energy-efficient power allocation(OE-PA). Numerical results are given to evaluate the performance of the derived scheme as compared to other schemes and show that our scheme has signifi cant improvement to energy saving.
基金National Natural Science Foundation of China(No.61461024)
文摘This paper provides an analytic performance evaluation of dual-hop cognitive amplify-and-forward (AF) relaying networks over independent nonidentically distributed (i.n.i.d.) fading channels. Two different transmit power constraint strategies at the secondary network are proposed to investigate the performance of the secondary network. In the case of combined power constraint,the maximum tolerable interference power on the primary network and the maximum transmit power at the secondary network are considered. Closed-form lower bound and its asymptotic expression for the outage probability (OP) are achieved. Utilizing the above results,average symbol error probability (ABEP) at high signal-to-noise ratios (SNRs) are also derived. In order to further study the performance of dual-hop cognitive AF relaying networks,the Closed-form lower bounds and asymptotic expressions for OP with single power constraint of the tolerable interference on the primary network is also obtained. Both analytical and simulation are employed to validate the accuracy of the theoretical analysis. The results show that the secondary network obtains a better performance when higher power constraint is employed.
基金The research was supported partially by the Major State Basic Research Development Program (973 Program) of China under Grant No.2009CB320504,the National High-tech Research and Development Program (863 Program) of China under Grant No.2011AA01A101,the National Natural Science Foundation of China under Grant No.61271041
文摘The highly mobility of vehicles, intermittent communication between the vehicles and the requirements of real time applications are some of the main challenges of multi-hop message delivery in Vehicular Ad Hoc Networks ( VANETs ). There are also additional challenges, especially when the destination for the message delivery is a moving vehicle. In this paper, we propose a novel multihop message delivery method, called the Coverage Area-based oPportunistic message forwarding algorithm (CAP). The main idea of CAP is to cover the potential area of a moving target vehicle as much as possible with the reachable area of the required delivery messages, so that the message can be delivered successfully. Because the success ratio and overhead of the multi-hop message delivery are two important but incompatible parameters in CAP, two tunings are discussed in the algorithm in order to maintain the balance of the two parameters. The simulation results show that compared with other reference approaches, CAP provides an efficient message delivery with a higher success ratio and a shorter message deNNy.
基金supported by the 2016 research fund of University of Ulsan
文摘In this paper, we propose and evaluate outage performance of a mixed amplify-and-forward(AF) and decode-and-forward(DF) relaying protocol in underlay cognitive radio. Different from the conventional AF and DF protocols, in the proposed protocol, a secondary source attempts to transmit its signal to a secondary destination with help of two secondary relays. One secondary relay always operates in AF mode, while the remaining one always operates in DF mode. Moreover, we also propose a relay selection method, which relies on the decoding status at the DF relay. For performance evaluation and comparison, we derive the exact and approximate closedform expressions of the outage probability for the proposed protocol over Rayleigh fading channel. Finally, we run Monte Carlo simulations to verify the derivations. Results presented that the proposed protocol obtains a diversity order of three and the outage performance of our scheme is between that of the conventional underlay DF protocol and that of the conventional underlay AF protocol.
基金supported in part by the National Science Council,Taiwan,"R.O.C.",under grant no.NSC 101-2221-E-164-019 and NSC 101-2221-E-164-020
文摘Long Term Evolution(LTE) and IEEE 802.16 WiMAX are competing access network technologies adopted in 4G wireless networks in recent years.LTE complies with3 GPP standards whereas 802.16 WiMAX is regulated by the Institute of Electrical and Electronics Engineers(IEEE).Although WiMAX is already operating commercially in Taiwan,the system is limited to an independent new system that is incompatible with the current 3G system.Hence,the cost of implementing the WiMAX system is relatively high,this being an impediment to its rapid uptake and widespread use.On the other hand,LTE conforms to 3GPP that is supported by telecommunication manufacturers and operators and is,moreover,backward compatible with 3G/UMTS cellular systems.The LTE specifications define how user equipment(UE) connects and communicates with evolved Node B(eNB) base stations.The enhanced version,LTE-Advanced,adds a new entity called the relay node(RN) to widen service coverage,although this change has resulted in a more complex architecture.Mobility management and data forwarding are essential components in wireless mobile networking.This paper focuses on the efficient handover procedure in LTE-Advanced networks,and proposes a Smart Forwarding mechanism to improve the handover performance.Simulation studies show that the proposed Smart Forwarding scheme employs a better operational transmission path that effectively reduces handover latency and signal overhead.
基金supported by the National Natural Science Foundation of China under Grant No. 61271174
文摘By allowing routers to combine the received packets before forwarding them,network coding-based applications are susceptible to possible malicious pollution attacks.Existing solutions for counteracting this issue either incur inter-generation pollution attacks(among multiple generations)or suffer high computation/bandwidth overhead.Using a dynamic public key technique,we propose a novel homomorphic signature scheme for network coding for each generation authentication without updating the initial secret key used.As per this idea,the secret key is scrambled for each generation by using the generation identifier,and each packet can be fast signed using the scrambled secret key for the generation to which the packet belongs.The scheme not only can resist intra-generation pollution attacks effectively but also can efficiently prevent inter-generation pollution attacks.Further,the communication overhead of the scheme is small and independent of the size of the transmitting files.
基金Supported by the National 973 Programs (2013CB329104)the National Natural Science Foundations of China (No. 61071090, No. 61171093)+3 种基金the Postgraduate Innovation Programs of Scientific Research of Jiangsu Province (CXZZ11_0388)Jiangsu Province Natural Science Foundation Key Projects (11KJA510001)National Science and Technology Key Projects (2011ZX03005-004-003)Jiangsu 973 Projects (BK2011027)
文摘Network Coding (NC) brings correlation between the coded signals from different sources, which makes the system more vulnerable to the decode error at relay. Conventional Cyclic Redundancy Code (CRC) has been implemented for error bit detection. However, its error correction is simply ignored. To fully exploit this feature, this paper proposes a novel joint Log-Likelihood Ratio (LLR) CRC error mitigation for NC two way relay channel. Specific thresholds are designed to estimate the error number of data block and identify those which can be recovered if the number is within the error correction scope of CRC. We examine two modes of the thresholds, one based on the average Bit Error Rate (BER) of source-relay link, while the other based on that of instantaneous one. We provide the full analysis for the Pair-wise Error Probability (PEP) performance of the scheme. A variety of numerical results are presented to reveal the superiority of the proposed scheme to conventional CRC NC under independent Rayleigh fading channels. Moreover, the efficiencies of the proposed thresholds are also validated.
文摘This work proposes a 12 kW three-phase grid-connected single stage PWM DC-AC converter destined to process the energy provided by a photovoltaic array composed of 57 KC200GT PV modules with high power factor for any solar radiation. The PWM inverter modeling and the control strategy, using dqO transformation, are proposed in order to also allow the system operation as an active power filter, capable to compensate harmonic components and react power generated by the non-linear loads connected to the mains grid. An input voltage clamping technique is proposed to impose the photovoltaic operation on the maximum power point. Simulation and experimental results are presented to validate the proposed methodology for grid connected photovoltaic generation system.
基金Project supported by the National Natural Science Foundation of China (Nos. 61309020 and 61521003)
文摘Network function virtualization (NFV) is a newly proposed technique designed to construct and manage network fimctions dynamically and efficiently. Allocating physical resources to the virtual network function forwarding graph is a critical issue in NFV. We formulate the forwarding graph embedding (FGE) problem as a binary integer programming problem, which aims to increase the revenue and decrease the cost to a service provider (SP) while considering limited network resources and the requirements of virtual functions. We then design a novel regional resource clustering metric to quantify the embedding potential of each substrate node and propose a topology-aware FGE algorithm called 'regional resource clustering FGE' (RRC-FGE). After implementing our algorithms in C++, simulation results showed that the total revenue was increased by more than 50 units and the acceptance ratio by more than 15%, and the cost of the service provider was decreased by more than 60 units.
基金Project supported by the Zhejiang Provincial National Natural Science Foundation (No. LQ14F020005), the National Natural Science Foundation of China (Nos. 61379123 and 61402414), and the Research Program of the Educational Commission of Zhej iang Province, China (No. Y201431815)
文摘The optimization of the network throughput and transmission range is one of the most important issues in cognitive relay networks (CRNs). Existing research has focused on the dual-hop network, which cannot be extended to a triple-hop network due to its shortcomings, including the limited transmission range and one-way communication. In this paper, a novel, triple-hop relay scheme is proposed to implement time-division duplex (TDD) transmission among secondary users (SUs) in a three-phase transmission. Moreover, a superposition coding (SC) method is adopted for handling two-receiver cases in triple-hop networks with a cognitive relay. We studied a joint optimization of time and power allocation in all three phases, which is formulated as a nonlinear and concave problem. Both analytical and numerical results show that the proposed scheme is able to improve the throughput of SUs, and enlarge the transmission range of primary users (PUs) without increasing the number of hops.