The solid-liquid interracial morphology evolution was investigated in directional solidification (DS) of Al-1.5%Cu alloy (mass fraction). The results show that the solidified microstructural evolution is gradual o...The solid-liquid interracial morphology evolution was investigated in directional solidification (DS) of Al-1.5%Cu alloy (mass fraction). The results show that the solidified microstructural evolution is gradual other than sharp, and the microstructure patterns are interesting and diversiform at the pulling rate ranging from 30 μm/s to 1500 μm/s. Indeed, dendrite to cell transition follows this sequence: dendrites→→banded cellular dendrites→elongated cells and part of dendrites→main elongated cells and little dendrites. Moreover, the present microstructure is not normal microstructure as we saw before. Further, according to the experimental phenomenon, the dendrite to cell transition was studied theoretically. Dendrite tip shape is an important parameter to characterize the dendrite to cell transition. As the dendrite to cell transition is far from equilibrium solidification, non-equilibrium solidification is taken into consideration in calculation. Finally, it is speculated that the dendrite to cell transition would occur at the minimum tip radius.展开更多
To explore the effect of strain rate ε on the high temperature deformation characteristics of ultrafine-grained materials, the deformation and damage features as well as microstructures of ECAP-treated pure Al at dif...To explore the effect of strain rate ε on the high temperature deformation characteristics of ultrafine-grained materials, the deformation and damage features as well as microstructures of ECAP-treated pure Al at different temperatures T and strain ratesε were systematically studied through compression tests and microscopic observations. The increase in ε eliminates strain softening at T≤473 K, and largely enhances the yield strength and flow stress at 473?573 K. The shear deformation dominates the plastic deformation of ECAP-treated Al. Many cracks along shear bands (SBs) are formed at T≥473 K and secondary SBs basically disappear at 1×10?3 s?1; however, at 1×10?2 s?1, cracks are only observed at temperature below 473 K, and secondary SBs become clearer at T≥473 K. The microstructures of ECAP-treated Al mainly consist of sub-grains (SGs). The increase in ε inhibits the SG growth, thus leading to the increases both in yield strength and flow stress at high temperatures.展开更多
Two different kinds of experimental techniques were used to in-situ study the austenite formation during intercritical annealing in C-Mn dual phase steel. The microstructure evolution was observed by confocal laser sc...Two different kinds of experimental techniques were used to in-situ study the austenite formation during intercritical annealing in C-Mn dual phase steel. The microstructure evolution was observed by confocal laser scanning microscope, and the austenite isothermal and non-isothermal transformation kinetics were studied by dilatometry. The results indicate that banded structure is produced for the reason of composition segregation and the competition between recrystallization and phase transformation. Austenite prefers to nucleate not only at ferrite/ferrite grain boundaries, but also inside the grains of ferrite.Furthermore, the austenitizing process is accomplished mainly via migration of the existing austenite/ferrite interface rather than nucleation of new grains. The incubation process can be divided into two stages which are controlled by carbon and manganese diffusion, respectively. During the incubation process, the nucleation rate of austenite decreases, and austenite growth changes from two-dimensional to one-dimensional. The partitioning coefficient, defined as the ratio of manganese content in the austenite to that in the adjacent ferrite, increases with increasing soaking time.展开更多
This paper describes the CVT (continuously variable transmission). Generally, CVTs are classified as belt-type or toroidal CVTs, and each CVT is basically composed of two parts such as the V-belt and pulley, or fric...This paper describes the CVT (continuously variable transmission). Generally, CVTs are classified as belt-type or toroidal CVTs, and each CVT is basically composed of two parts such as the V-belt and pulley, or friction wheels. In the belt-type CVT, the pulley is driven by a belt placed between two (left and right) circle boards, while in the toroidal CVT, two rollers rotate under the condition being pushed by strong compression power. Since these conventional CVTs use friction force, their energy transfer efficiency might be inferior. Furthermore, although these CVTs require precise structures and processing, they make noise, and are not durable. Consequently, we propose a new structural CVT in this paper.展开更多
基金Project(SKLSP201418)supported by the Fund of the State Key Laboratory of Solidification Processing in North China University of Technology,ChinaProjects(51171151,51331005)supported by the National Natural Science Foundation of China
文摘The solid-liquid interracial morphology evolution was investigated in directional solidification (DS) of Al-1.5%Cu alloy (mass fraction). The results show that the solidified microstructural evolution is gradual other than sharp, and the microstructure patterns are interesting and diversiform at the pulling rate ranging from 30 μm/s to 1500 μm/s. Indeed, dendrite to cell transition follows this sequence: dendrites→→banded cellular dendrites→elongated cells and part of dendrites→main elongated cells and little dendrites. Moreover, the present microstructure is not normal microstructure as we saw before. Further, according to the experimental phenomenon, the dendrite to cell transition was studied theoretically. Dendrite tip shape is an important parameter to characterize the dendrite to cell transition. As the dendrite to cell transition is far from equilibrium solidification, non-equilibrium solidification is taken into consideration in calculation. Finally, it is speculated that the dendrite to cell transition would occur at the minimum tip radius.
基金Projects(51231002,51271054,51571058,50671023)supported by the National Natural Science Foundation of China
文摘To explore the effect of strain rate ε on the high temperature deformation characteristics of ultrafine-grained materials, the deformation and damage features as well as microstructures of ECAP-treated pure Al at different temperatures T and strain ratesε were systematically studied through compression tests and microscopic observations. The increase in ε eliminates strain softening at T≤473 K, and largely enhances the yield strength and flow stress at 473?573 K. The shear deformation dominates the plastic deformation of ECAP-treated Al. Many cracks along shear bands (SBs) are formed at T≥473 K and secondary SBs basically disappear at 1×10?3 s?1; however, at 1×10?2 s?1, cracks are only observed at temperature below 473 K, and secondary SBs become clearer at T≥473 K. The microstructures of ECAP-treated Al mainly consist of sub-grains (SGs). The increase in ε inhibits the SG growth, thus leading to the increases both in yield strength and flow stress at high temperatures.
基金Project(2013AA031601)supported by the National High Technology Research and Development Program of ChinaProject(2012BAF04B01)supported by the National Science and Technology Pillar Program During the 12th Five-year Plan Period of China
文摘Two different kinds of experimental techniques were used to in-situ study the austenite formation during intercritical annealing in C-Mn dual phase steel. The microstructure evolution was observed by confocal laser scanning microscope, and the austenite isothermal and non-isothermal transformation kinetics were studied by dilatometry. The results indicate that banded structure is produced for the reason of composition segregation and the competition between recrystallization and phase transformation. Austenite prefers to nucleate not only at ferrite/ferrite grain boundaries, but also inside the grains of ferrite.Furthermore, the austenitizing process is accomplished mainly via migration of the existing austenite/ferrite interface rather than nucleation of new grains. The incubation process can be divided into two stages which are controlled by carbon and manganese diffusion, respectively. During the incubation process, the nucleation rate of austenite decreases, and austenite growth changes from two-dimensional to one-dimensional. The partitioning coefficient, defined as the ratio of manganese content in the austenite to that in the adjacent ferrite, increases with increasing soaking time.
文摘This paper describes the CVT (continuously variable transmission). Generally, CVTs are classified as belt-type or toroidal CVTs, and each CVT is basically composed of two parts such as the V-belt and pulley, or friction wheels. In the belt-type CVT, the pulley is driven by a belt placed between two (left and right) circle boards, while in the toroidal CVT, two rollers rotate under the condition being pushed by strong compression power. Since these conventional CVTs use friction force, their energy transfer efficiency might be inferior. Furthermore, although these CVTs require precise structures and processing, they make noise, and are not durable. Consequently, we propose a new structural CVT in this paper.