With the increasing requirement for the mechanical vibration and acoustic noise of the permanent magnet synchronous motor(PMSM)drive system,the demand for cogging torque reduction of PMSM has been considerably increas...With the increasing requirement for the mechanical vibration and acoustic noise of the permanent magnet synchronous motor(PMSM)drive system,the demand for cogging torque reduction of PMSM has been considerably increased.To solve the problem of oversized cogging torque of axial flux PMSM,a rotor topology with hybrid permanent magnet is proposed to weaken the cogging torque.Firstly,the expression of the cogging torque of the axial flux motor is derived,and the influence of the pole-arc ratio of the permanent magnet on the cogging torque is analyzed.Secondly,the rotor structure with hybrid permanent magnet is adopted to reduce the cogging torque.According to the analytical analysis,the constraints of the size and pole-arc ratio between the hybrid permanent magnets are obtained,and the two permanent magnets related to the minimum cogging torque are determined.And the analysis results are verified by the finite element simulation.Furthermore,the motor performance with and without the hybrid permanent magnet is compared with each other.Finally,the cogging torque is significantly reduced by adopting a rotor structure with hybrid permanent magnets.展开更多
This paper addresses attitude synchronization problems for systems of multiple rigid-body agents with directed interconnection topologies.Two scenarios which differ in available information are considered.In the first...This paper addresses attitude synchronization problems for systems of multiple rigid-body agents with directed interconnection topologies.Two scenarios which differ in available information are considered.In the first scenario the agents can obtain their rotations and angular velocities relative to an inertial reference frame and transmit these information to their neighbors,while in the second scenario the agents can only obtain their own angular velocities and measure the relative rotations and relative angular velocities of their neighbors.By using rotation vectors and the high gain control,the authors provide torque control laws asymptotically synchronizing the rotations of the system almost globally for the first scenario and with initial rotations of the agents contained in a convex ball of SO(3)for the second scenario.An illustrative example is provided to show the synchronization results for both scenarios.展开更多
基金supported by the Natural Science Foundation of Hubei Province(No.2019 CFB759)。
文摘With the increasing requirement for the mechanical vibration and acoustic noise of the permanent magnet synchronous motor(PMSM)drive system,the demand for cogging torque reduction of PMSM has been considerably increased.To solve the problem of oversized cogging torque of axial flux PMSM,a rotor topology with hybrid permanent magnet is proposed to weaken the cogging torque.Firstly,the expression of the cogging torque of the axial flux motor is derived,and the influence of the pole-arc ratio of the permanent magnet on the cogging torque is analyzed.Secondly,the rotor structure with hybrid permanent magnet is adopted to reduce the cogging torque.According to the analytical analysis,the constraints of the size and pole-arc ratio between the hybrid permanent magnets are obtained,and the two permanent magnets related to the minimum cogging torque are determined.And the analysis results are verified by the finite element simulation.Furthermore,the motor performance with and without the hybrid permanent magnet is compared with each other.Finally,the cogging torque is significantly reduced by adopting a rotor structure with hybrid permanent magnets.
基金supported by Beijing Natural Science Foundation under Grant No.4152057973 program(2014CB845301/2/3)
文摘This paper addresses attitude synchronization problems for systems of multiple rigid-body agents with directed interconnection topologies.Two scenarios which differ in available information are considered.In the first scenario the agents can obtain their rotations and angular velocities relative to an inertial reference frame and transmit these information to their neighbors,while in the second scenario the agents can only obtain their own angular velocities and measure the relative rotations and relative angular velocities of their neighbors.By using rotation vectors and the high gain control,the authors provide torque control laws asymptotically synchronizing the rotations of the system almost globally for the first scenario and with initial rotations of the agents contained in a convex ball of SO(3)for the second scenario.An illustrative example is provided to show the synchronization results for both scenarios.