Oryza sativa L. ssp. japonica cv. Zhonghua 8, which is recalcitrant to infection of Agrobacterium tumefaciens (Smith et Townsend) Conn strain EHA105 with ordinary binary vector pCambia 1301, was transformed through Ag...Oryza sativa L. ssp. japonica cv. Zhonghua 8, which is recalcitrant to infection of Agrobacterium tumefaciens (Smith et Townsend) Conn strain EHA105 with ordinary binary vector pCambia 1301, was transformed through Agrobacterium-mediated transformation with help of bombardment. The transformation efficiency can be raised greatly. Single copy of gene insertion in the genome of transgenic rice plants was proved by Southern analysis and the expression of GUS gene was observed. GUS gene and hygromycin-resistant gene show 3:1 segregation in progenies of the transgenic rice plants.展开更多
[Objective] This study was to identify the expression of exogenous antimicrobial peptide in transgenic Houttuynia cordata Thunb. plants,and analyze their resistance to stem rot disease. [Methods] SDS-PAGE and Western ...[Objective] This study was to identify the expression of exogenous antimicrobial peptide in transgenic Houttuynia cordata Thunb. plants,and analyze their resistance to stem rot disease. [Methods] SDS-PAGE and Western blot analysis were employed to detect expression of exogenous antimicrobial peptide in transgenic H. cordata plants. Both wild type and transgenic H. cordata plants were inoculated with different concentrations of Rhizoctonia solani spores for detecting their resistance. [Results] The exogenous antimicrobial peptide was detected at translation level. The optimal parameters for detecting the resistance of transgenic H. cordata plants to R. solani was inoculation of spores at a concentration of 3×105 ind./ml and cultured for three days. The results showed that resistance of transgenic H. cordata plants to R. solani was enhanced in comparison with CKs. [Conclusion] Expression of exogenous antimicrobial peptide can enhance the resistance of transgenic H. cordata plants to stem rot disease.展开更多
The soft rot infected by pathogenic bacterium Erwinia aroideae Holland is one of the three serious diseases of Chinese cabbage ( Brassica pekinensis Rupr.). By constructing vector system of high frequency transformati...The soft rot infected by pathogenic bacterium Erwinia aroideae Holland is one of the three serious diseases of Chinese cabbage ( Brassica pekinensis Rupr.). By constructing vector system of high frequency transformation mediated by Agrobacterium tunefaciens EHA105, anti-bacterial peptide gene with strong bactericidal action to pathogenic bacteria was introduced into Chinese cabbage AB-81 self-bred line and the transgenic plants were obtained. PCR and Southern blotting detection showed that target gene was integrated into plant genome of Chinese cabbage. The tests of bacteriostasis action of the extract from transgenic plants in vitro, and the assay of disease-resistant of transgenic plantlets in the tube and the pot by perfusing inoculation with pathogenic bacteria showed obvious resistance to soft rot. This resistance can be a stable heredity by genetic analysis of generations of transgenic plants self-bred, separation ratio of its R, was 3:1. The resistance to Km and disease of soft rot was still kept in the R-5. These results indicated the possibility of breeding new varieties of anti-soft rot Chinese cabbage by transgenic plants as parents.展开更多
The coding sequence of Vitreoscilla hemoglobin (vhb) was cloned with PCR technique from Vitreoscilla stercoraria Pringsheim. The plant expression vector with vhb gene under the control of CaMV 35S promoter was constru...The coding sequence of Vitreoscilla hemoglobin (vhb) was cloned with PCR technique from Vitreoscilla stercoraria Pringsheim. The plant expression vector with vhb gene under the control of CaMV 35S promoter was constructed and used in the transformation of Petunia hybrida Vilm by the Agrobacterium mediated procedure. The results of PCR amplification and Southern hybridization indicated that the vhb gene had been integrated into the petunia genome and the vhb gene expression had been detected by RT-PCR amplification. In hydroponic culture the transgenic petunias grew much better than non-transgenic controls. For further analysis of hypoxia tolerance of transgenic petunia, the petunia plants with vhb gene were submerged into liquid MS medium. The transgenic plants survived in hypoxic condition and grew out of the liquid surface in a few weeks, while non-transgenic plants were still submerged and suffocated in culture solution without ability to grow out of liquid medium in submersed culture for four to five weeks. The vhb gene transformed petunia plants had been planted and tested in a simulated flooding condition, and showed obvious tolerance to water-logging. It seen is that hemoglobin gene from Vitreoscilla might have the potential use in molecular breeding for the improvement of plant resistance to hypoxia and flooding.展开更多
Hypocotyl segments from aseptic seedlings of two important cultivars of upland cotton ( Gossypium hirsutum L.) in Northwest China, 'Xinluzao_1', 'Jinmian_7', 'Jinmian_12' and 'Jihe_321...Hypocotyl segments from aseptic seedlings of two important cultivars of upland cotton ( Gossypium hirsutum L.) in Northwest China, 'Xinluzao_1', 'Jinmian_7', 'Jinmian_12' and 'Jihe_321' were transformed respectively by two efficient plant expression plasmids pBinMoBc and pBinoBc via Agrobacterium tumefaciens . In pBinMoBc, cry 1Ac3 gene, which encodes the Bt toxin, is under the control of chimeric OM promoter. In pBinoBc, it is under control of CaMV 35S promoter. After co_cultivation with Agrobacterium tumefimpfaciens LBA4404 (containing pBinMoBc or pBinoBc), kanamycin_resistant selection, somatic embryos were induced and regenerated plants were obtained. Then the regenerated plantlets were grafted to untransformed stocks in greenhouse to produce descendants. The integration of cry 1Ac3 gene and its expression in T 2 generation of transgenic cotton plants were confirmed by Southern hybridization and Western blotting. The analyses of insect bioassay indicated that the transgenic plants of both constructions have significant resistance to the larvae of cotton bollworm ( Heliothis armigera ) and that cry 1Ac3 gene driven by chimeric OM promoter could endue T 2 generation cotton with high pest_resistant ability, implicating that it has a profound application in genetic engineering to breed new pest_resistant cotton varieties.展开更多
ObjectiveThe aim was to understand the effects of transgenic DREB soybean on the ammonia-oxidizing bacteria. MethodThe diversity of the cto gene in pot-planted transgenic soybean and near-isogenic non-transgenic soybe...ObjectiveThe aim was to understand the effects of transgenic DREB soybean on the ammonia-oxidizing bacteria. MethodThe diversity of the cto gene in pot-planted transgenic soybean and near-isogenic non-transgenic soybean under normal water condition and drought stress was analyzed by PCR-DGGE and sequence analysis. ResultRhizosphere community diversity of ammonia-oxidizing bacteria showed no difference between the treatments of transgenic soybean and its non-transgenic isolines, moreover transgenic soybean under normal water condition and drought stress improved the diversity of the ammonia-oxidizing bacteria in the harvest time. The phylogenetic analysis revealed that all the sequences of excised DGGE bands were closely related to members of the genus Nitrosovibrio and Nitrosospira of the β-subclass Proteobacteria. ConclusionTransgenic DREB soybean has no adverse impact on soil ammonia-oxidizing bacteria.展开更多
[ Objective] The study is to generate pharmaceutical protein via plant transgenic technique. [Methed] Using the cotyledons with petiole as transformation receptor, the fusion gene of rapeseed oil-body gene and bFGF wa...[ Objective] The study is to generate pharmaceutical protein via plant transgenic technique. [Methed] Using the cotyledons with petiole as transformation receptor, the fusion gene of rapeseed oil-body gene and bFGF was introduced into the rapeseed ( Brassica campestris L. ) by Agrobacterium tumefaciens-mediated transformation; meanwhile regeneration conditions of rapeseed were also optimized, and the regenerated resistant plantlets were detected by PCR and Southern blot. [ Result] This fusion gene had been integrated into rapeseed genome successfully, and the optimized conditions of transformation and regeneration were as follows: explants pre-culture for 2 d, co-culture for 3 d, bacteria solution OD600 for 0.3 and infection time for 5 min. [ Conclusion] The results laid a solid foundation for extraction, isolation and purification of protein in transgenic plant seeds.展开更多
[Objective] The research aimed to provide reference for increasing the genetic transformation efficiency of Ginkgo biloba mediated by Agrobacterium.[Method] Taking the mature embryos of Ginkgo biloba seeds as explants...[Objective] The research aimed to provide reference for increasing the genetic transformation efficiency of Ginkgo biloba mediated by Agrobacterium.[Method] Taking the mature embryos of Ginkgo biloba seeds as explants,after 48 hours' pre-cultivation on MS medium in the absence of phytohormone,GUS gene was transmitted into embryos of Ginkgo biloba mediated by three kinds of Agrobacterium.Transient expression of GUS gene activity was observed through histochemical staining,and the influencing factors of the expression of GUS gene were analyzed.And the expression vector of 1-deoxy-D-xylulose-5-phosphate reductoisomerase in the biosynthesis approach of biobalide precursor of Ginkgo biloba was constructed.[Result] A more suitable genetic transformation scheme was obtained as follows:taking embryos of Ginkgo biloba as explants,using EHA105 Agrobacterium with pCAMBIA1304+ for infection,co-culture for 3 days and GUS staining.The results showed that transient expression rate of GUS after transformation was higher.[Conclusion] The research provide a more effective method for further study on the transgene of Ginkgo biloba.展开更多
[Objective] This study was conducted to investigate the application of nanometallic materials in inhibiting Agrobacteriurn contamination in genetic transformation of Anthurium. [Method] Different nanometallic material...[Objective] This study was conducted to investigate the application of nanometallic materials in inhibiting Agrobacteriurn contamination in genetic transformation of Anthurium. [Method] Different nanometallic materials were added into Agrobacterium medium and Anthurium callus medium, to investigate the effects of their effects on Agrobacterium growth, callus growth and differentiation, and Agrobacterium contamination. [Result] Among the 4 nanometallic materials, NanoAg-2 showed a significant inhibitory effect on the growth of Agrobacterium, with a minimal inhibitory concentration of 25 mg/L. Even for the Anthurium calli or transgenic material contaminated by the Agrobacterium, a good antibacterial effect could be achieved after treating with 25 mg/L NanoAg-2 for 1 d with oscillation, the antibacterial rate reached 100%, and the Anthurium calli could grow and differentiate normally. [Conclusioa] NanoAg-2 could effectively inhibit Agrobacterium contamination, and its an- tibacterial effect is significantly better than cephalosporin and carbenicillin.展开更多
It was suggested that chronic ethanol exposure could result in testicular germ cell apoptosis, but the mechanism is still unclear. In the present study, we use a model of transgenic mice ubiquitously overexpressing hu...It was suggested that chronic ethanol exposure could result in testicular germ cell apoptosis, but the mechanism is still unclear. In the present study, we use a model of transgenic mice ubiquitously overexpressing human FasL to investigate whether Fas ligand plays a role in ethanol-induced testicular germ cell apoptosis. Both wild-type (WT)mice and transgenic (TG) mice were treated with acute ethanol (20% v/v) by introperitoneal injection for five times.After ethanol injection, WT mice displayed up-regulation of Fas ligand in the testes, which was shown by FITCconjugated flow cytometry and western blotting. Moreover, TG mice exhibited significantly more apoptotic germ cells than WT mice did after ethanol injection, which was demonstrated by DNA fragmentation, PI staining flow cytometry and TUNEL staining. In addition, histopathological examination revealed that degenerative changes of epithelial component of the tubules occurred in FasL overexpressing transgenic mice while testicular morphology was normal in wild-type mice after acute ethanol exposure, suggesting FasL expression determines the sensitivity of testes to ethanol in mice. In summary, we provide the direct evidences that Fas ligand mediates the apoptosis of testicular germ cells induced by acute ethanol using FasL transgenic mice.展开更多
This investigation reports a protocol for transfer and expression of foreign chimeric genes in loblolly pine (Pinus taeda L.). Transformation was achieved by co-cultivation of mature zygotic embryos with Agrobacterium...This investigation reports a protocol for transfer and expression of foreign chimeric genes in loblolly pine (Pinus taeda L.). Transformation was achieved by co-cultivation of mature zygotic embryos with Agrobacterium tumefaciens strain LBA4404 which harbored a binary vector (pBI121) including genes for β-glucuronidase (GUS) and neomycin phosphotransferase (NPTII). Factors influencing transgene expression including seed sources of loblolly pine, concentration of bacteria, and the wounding procedures of target explants were investigated. The expression of foreign gene was confirmed by the ability of mature zygotic embryos to produce calli in the presence of kanamycin, by histochemical assays of GUS activity, by PCR analysis, and by Southern blot. The successful expression of the GUS gene in different families of loblolly pine suggests that this transformation system is probably useful for the production of the genetically modified conifers.展开更多
Tall fescue (Festuca arundinacea Schreb.) is a cool-season turfgrass used on fairways in golf courses. The object of this study was to develop a more efficient, reliable, and repeatable approach in transforming the ...Tall fescue (Festuca arundinacea Schreb.) is a cool-season turfgrass used on fairways in golf courses. The object of this study was to develop a more efficient, reliable, and repeatable approach in transforming the grass using Agrobacterium (EHA105), where β-glucuronidase gene (uidA) was used as a reporter and hygromycin phosphotransferase gene (hyg) as a selectable marker. An effective expression of transgene was observed in transforming 2-month-old calli derived from mature seeds (cv. Bingo) cultured on MS medium supplemented with 9 mg·L^-1 2, 4-D. A two-step solid medium selection with increasing hygromycin concentration (from 30 to 50 mg· L^-1) was used to obtain resistant calli. Transgenic plants have been produced from many independent transformed calli. The presence of functional β-glucuronidase gene (uidA) was detected in hygromycin-resistant calli. Transgenic plants were regenerated and PCR and Southern blot confirmed transgene integration in the tall fescue genome.展开更多
Transferring foreign DNA into plant cells by biolistic and Agrobacterium _mediated methods may result in random integration of different copy numbers of the transgene, and different proportions of intact vs. rearra...Transferring foreign DNA into plant cells by biolistic and Agrobacterium _mediated methods may result in random integration of different copy numbers of the transgene, and different proportions of intact vs. rearranged copies of the transgene. This may, in turn, affect transgene expression levels. To test the above hypothesis, we first introduced the same plasmid, pAc1PG_CAM, into rice (Oryza sativa L.) calli separately by the biolistic method and by the Agrobacterium _mediated method. To show whether different plasmids may affect the results, we also introduced pTOK233 by the Agrobacterium _mediated method and pJPM44 by the biolistic method. Transgene expression of R0 plants was monitored by histochemical analysis of GUS activity. Transgene copy number was determined by Southern blot analysis after digesting genomic DNA with an enzyme that has a unique cutting site within the input plasmid. The total genomic DNA was also digested by a two_cut enzyme (the cuts are located at two sides of a given transgene expression cassette), followed by Southern blotting analysis, for determining the number of intact transgene expression cassettes. Our data showed that Agrobacterium _mediated transformation resulted in lower transgene copy number (average between 2.1 and 2.3) in transgenic rice plants, compared with those plants obtained by the biolistic method (average between 4.2 and 5.6). The frequency of DNA rearrangement in expression cassettes is lower in transgenic rice plants obtained by the Agrobacterium _ mediated method than those obtained by the biolistic method. The average rearrangement frequency is 0.07 to 0.106 for the Agrobacterium _mediated method, and 0.57 to 0.66 for the biolistic method. Our results suggest that it is better to compare the number of intact expression cassettes instead of the total copy number of the transgene in demonstrating their influence on the level of transgene expression. This is the first report on the frequency of expression cassette rearrangement in transgenic plants transformed with the same plasmid by two different transformation methods.展开更多
文摘Oryza sativa L. ssp. japonica cv. Zhonghua 8, which is recalcitrant to infection of Agrobacterium tumefaciens (Smith et Townsend) Conn strain EHA105 with ordinary binary vector pCambia 1301, was transformed through Agrobacterium-mediated transformation with help of bombardment. The transformation efficiency can be raised greatly. Single copy of gene insertion in the genome of transgenic rice plants was proved by Southern analysis and the expression of GUS gene was observed. GUS gene and hygromycin-resistant gene show 3:1 segregation in progenies of the transgenic rice plants.
基金Supported by National Natural Science Foundation of China(30772737)~~
文摘[Objective] This study was to identify the expression of exogenous antimicrobial peptide in transgenic Houttuynia cordata Thunb. plants,and analyze their resistance to stem rot disease. [Methods] SDS-PAGE and Western blot analysis were employed to detect expression of exogenous antimicrobial peptide in transgenic H. cordata plants. Both wild type and transgenic H. cordata plants were inoculated with different concentrations of Rhizoctonia solani spores for detecting their resistance. [Results] The exogenous antimicrobial peptide was detected at translation level. The optimal parameters for detecting the resistance of transgenic H. cordata plants to R. solani was inoculation of spores at a concentration of 3×105 ind./ml and cultured for three days. The results showed that resistance of transgenic H. cordata plants to R. solani was enhanced in comparison with CKs. [Conclusion] Expression of exogenous antimicrobial peptide can enhance the resistance of transgenic H. cordata plants to stem rot disease.
文摘The soft rot infected by pathogenic bacterium Erwinia aroideae Holland is one of the three serious diseases of Chinese cabbage ( Brassica pekinensis Rupr.). By constructing vector system of high frequency transformation mediated by Agrobacterium tunefaciens EHA105, anti-bacterial peptide gene with strong bactericidal action to pathogenic bacteria was introduced into Chinese cabbage AB-81 self-bred line and the transgenic plants were obtained. PCR and Southern blotting detection showed that target gene was integrated into plant genome of Chinese cabbage. The tests of bacteriostasis action of the extract from transgenic plants in vitro, and the assay of disease-resistant of transgenic plantlets in the tube and the pot by perfusing inoculation with pathogenic bacteria showed obvious resistance to soft rot. This resistance can be a stable heredity by genetic analysis of generations of transgenic plants self-bred, separation ratio of its R, was 3:1. The resistance to Km and disease of soft rot was still kept in the R-5. These results indicated the possibility of breeding new varieties of anti-soft rot Chinese cabbage by transgenic plants as parents.
文摘The coding sequence of Vitreoscilla hemoglobin (vhb) was cloned with PCR technique from Vitreoscilla stercoraria Pringsheim. The plant expression vector with vhb gene under the control of CaMV 35S promoter was constructed and used in the transformation of Petunia hybrida Vilm by the Agrobacterium mediated procedure. The results of PCR amplification and Southern hybridization indicated that the vhb gene had been integrated into the petunia genome and the vhb gene expression had been detected by RT-PCR amplification. In hydroponic culture the transgenic petunias grew much better than non-transgenic controls. For further analysis of hypoxia tolerance of transgenic petunia, the petunia plants with vhb gene were submerged into liquid MS medium. The transgenic plants survived in hypoxic condition and grew out of the liquid surface in a few weeks, while non-transgenic plants were still submerged and suffocated in culture solution without ability to grow out of liquid medium in submersed culture for four to five weeks. The vhb gene transformed petunia plants had been planted and tested in a simulated flooding condition, and showed obvious tolerance to water-logging. It seen is that hemoglobin gene from Vitreoscilla might have the potential use in molecular breeding for the improvement of plant resistance to hypoxia and flooding.
文摘Hypocotyl segments from aseptic seedlings of two important cultivars of upland cotton ( Gossypium hirsutum L.) in Northwest China, 'Xinluzao_1', 'Jinmian_7', 'Jinmian_12' and 'Jihe_321' were transformed respectively by two efficient plant expression plasmids pBinMoBc and pBinoBc via Agrobacterium tumefaciens . In pBinMoBc, cry 1Ac3 gene, which encodes the Bt toxin, is under the control of chimeric OM promoter. In pBinoBc, it is under control of CaMV 35S promoter. After co_cultivation with Agrobacterium tumefimpfaciens LBA4404 (containing pBinMoBc or pBinoBc), kanamycin_resistant selection, somatic embryos were induced and regenerated plants were obtained. Then the regenerated plantlets were grafted to untransformed stocks in greenhouse to produce descendants. The integration of cry 1Ac3 gene and its expression in T 2 generation of transgenic cotton plants were confirmed by Southern hybridization and Western blotting. The analyses of insect bioassay indicated that the transgenic plants of both constructions have significant resistance to the larvae of cotton bollworm ( Heliothis armigera ) and that cry 1Ac3 gene driven by chimeric OM promoter could endue T 2 generation cotton with high pest_resistant ability, implicating that it has a profound application in genetic engineering to breed new pest_resistant cotton varieties.
基金Supported by the Special Scientific Fund for Non-profit Environmental Industry(2010467038)~~
文摘ObjectiveThe aim was to understand the effects of transgenic DREB soybean on the ammonia-oxidizing bacteria. MethodThe diversity of the cto gene in pot-planted transgenic soybean and near-isogenic non-transgenic soybean under normal water condition and drought stress was analyzed by PCR-DGGE and sequence analysis. ResultRhizosphere community diversity of ammonia-oxidizing bacteria showed no difference between the treatments of transgenic soybean and its non-transgenic isolines, moreover transgenic soybean under normal water condition and drought stress improved the diversity of the ammonia-oxidizing bacteria in the harvest time. The phylogenetic analysis revealed that all the sequences of excised DGGE bands were closely related to members of the genus Nitrosovibrio and Nitrosospira of the β-subclass Proteobacteria. ConclusionTransgenic DREB soybean has no adverse impact on soil ammonia-oxidizing bacteria.
基金Supported by Bioreactor Important Special Item of 863-Program inthe "Eleventh Five-Year" Plan (No. 2007AA100503)Science and Technology Development Key Plan of Jilin Province( No.20070922)+1 种基金Cultivation Fund of Scientific and Technical Innovation Project Major Program of Higher Education Institutions ( No.70S018)Science and Technology Plan of Changchun City (No.06GG150)~~
文摘[ Objective] The study is to generate pharmaceutical protein via plant transgenic technique. [Methed] Using the cotyledons with petiole as transformation receptor, the fusion gene of rapeseed oil-body gene and bFGF was introduced into the rapeseed ( Brassica campestris L. ) by Agrobacterium tumefaciens-mediated transformation; meanwhile regeneration conditions of rapeseed were also optimized, and the regenerated resistant plantlets were detected by PCR and Southern blot. [ Result] This fusion gene had been integrated into rapeseed genome successfully, and the optimized conditions of transformation and regeneration were as follows: explants pre-culture for 2 d, co-culture for 3 d, bacteria solution OD600 for 0.3 and infection time for 5 min. [ Conclusion] The results laid a solid foundation for extraction, isolation and purification of protein in transgenic plant seeds.
文摘[Objective] The research aimed to provide reference for increasing the genetic transformation efficiency of Ginkgo biloba mediated by Agrobacterium.[Method] Taking the mature embryos of Ginkgo biloba seeds as explants,after 48 hours' pre-cultivation on MS medium in the absence of phytohormone,GUS gene was transmitted into embryos of Ginkgo biloba mediated by three kinds of Agrobacterium.Transient expression of GUS gene activity was observed through histochemical staining,and the influencing factors of the expression of GUS gene were analyzed.And the expression vector of 1-deoxy-D-xylulose-5-phosphate reductoisomerase in the biosynthesis approach of biobalide precursor of Ginkgo biloba was constructed.[Result] A more suitable genetic transformation scheme was obtained as follows:taking embryos of Ginkgo biloba as explants,using EHA105 Agrobacterium with pCAMBIA1304+ for infection,co-culture for 3 days and GUS staining.The results showed that transient expression rate of GUS after transformation was higher.[Conclusion] The research provide a more effective method for further study on the transgene of Ginkgo biloba.
文摘[Objective] This study was conducted to investigate the application of nanometallic materials in inhibiting Agrobacteriurn contamination in genetic transformation of Anthurium. [Method] Different nanometallic materials were added into Agrobacterium medium and Anthurium callus medium, to investigate the effects of their effects on Agrobacterium growth, callus growth and differentiation, and Agrobacterium contamination. [Result] Among the 4 nanometallic materials, NanoAg-2 showed a significant inhibitory effect on the growth of Agrobacterium, with a minimal inhibitory concentration of 25 mg/L. Even for the Anthurium calli or transgenic material contaminated by the Agrobacterium, a good antibacterial effect could be achieved after treating with 25 mg/L NanoAg-2 for 1 d with oscillation, the antibacterial rate reached 100%, and the Anthurium calli could grow and differentiate normally. [Conclusioa] NanoAg-2 could effectively inhibit Agrobacterium contamination, and its an- tibacterial effect is significantly better than cephalosporin and carbenicillin.
基金This work was supported by foundations from Chinese Academy of Sciences and Special Funds for Major State Basic Research of China(No.G19990539).
文摘It was suggested that chronic ethanol exposure could result in testicular germ cell apoptosis, but the mechanism is still unclear. In the present study, we use a model of transgenic mice ubiquitously overexpressing human FasL to investigate whether Fas ligand plays a role in ethanol-induced testicular germ cell apoptosis. Both wild-type (WT)mice and transgenic (TG) mice were treated with acute ethanol (20% v/v) by introperitoneal injection for five times.After ethanol injection, WT mice displayed up-regulation of Fas ligand in the testes, which was shown by FITCconjugated flow cytometry and western blotting. Moreover, TG mice exhibited significantly more apoptotic germ cells than WT mice did after ethanol injection, which was demonstrated by DNA fragmentation, PI staining flow cytometry and TUNEL staining. In addition, histopathological examination revealed that degenerative changes of epithelial component of the tubules occurred in FasL overexpressing transgenic mice while testicular morphology was normal in wild-type mice after acute ethanol exposure, suggesting FasL expression determines the sensitivity of testes to ethanol in mice. In summary, we provide the direct evidences that Fas ligand mediates the apoptosis of testicular germ cells induced by acute ethanol using FasL transgenic mice.
文摘This investigation reports a protocol for transfer and expression of foreign chimeric genes in loblolly pine (Pinus taeda L.). Transformation was achieved by co-cultivation of mature zygotic embryos with Agrobacterium tumefaciens strain LBA4404 which harbored a binary vector (pBI121) including genes for β-glucuronidase (GUS) and neomycin phosphotransferase (NPTII). Factors influencing transgene expression including seed sources of loblolly pine, concentration of bacteria, and the wounding procedures of target explants were investigated. The expression of foreign gene was confirmed by the ability of mature zygotic embryos to produce calli in the presence of kanamycin, by histochemical assays of GUS activity, by PCR analysis, and by Southern blot. The successful expression of the GUS gene in different families of loblolly pine suggests that this transformation system is probably useful for the production of the genetically modified conifers.
基金Foundation project: This paper was supported by Zhejiang Provincial Science and Technology Plan of China (Grant No. 2003C30053) and Zhejiang Provincial Natural Science Foundation of China (Grant No.Y504076).
文摘Tall fescue (Festuca arundinacea Schreb.) is a cool-season turfgrass used on fairways in golf courses. The object of this study was to develop a more efficient, reliable, and repeatable approach in transforming the grass using Agrobacterium (EHA105), where β-glucuronidase gene (uidA) was used as a reporter and hygromycin phosphotransferase gene (hyg) as a selectable marker. An effective expression of transgene was observed in transforming 2-month-old calli derived from mature seeds (cv. Bingo) cultured on MS medium supplemented with 9 mg·L^-1 2, 4-D. A two-step solid medium selection with increasing hygromycin concentration (from 30 to 50 mg· L^-1) was used to obtain resistant calli. Transgenic plants have been produced from many independent transformed calli. The presence of functional β-glucuronidase gene (uidA) was detected in hygromycin-resistant calli. Transgenic plants were regenerated and PCR and Southern blot confirmed transgene integration in the tall fescue genome.
文摘Transferring foreign DNA into plant cells by biolistic and Agrobacterium _mediated methods may result in random integration of different copy numbers of the transgene, and different proportions of intact vs. rearranged copies of the transgene. This may, in turn, affect transgene expression levels. To test the above hypothesis, we first introduced the same plasmid, pAc1PG_CAM, into rice (Oryza sativa L.) calli separately by the biolistic method and by the Agrobacterium _mediated method. To show whether different plasmids may affect the results, we also introduced pTOK233 by the Agrobacterium _mediated method and pJPM44 by the biolistic method. Transgene expression of R0 plants was monitored by histochemical analysis of GUS activity. Transgene copy number was determined by Southern blot analysis after digesting genomic DNA with an enzyme that has a unique cutting site within the input plasmid. The total genomic DNA was also digested by a two_cut enzyme (the cuts are located at two sides of a given transgene expression cassette), followed by Southern blotting analysis, for determining the number of intact transgene expression cassettes. Our data showed that Agrobacterium _mediated transformation resulted in lower transgene copy number (average between 2.1 and 2.3) in transgenic rice plants, compared with those plants obtained by the biolistic method (average between 4.2 and 5.6). The frequency of DNA rearrangement in expression cassettes is lower in transgenic rice plants obtained by the Agrobacterium _ mediated method than those obtained by the biolistic method. The average rearrangement frequency is 0.07 to 0.106 for the Agrobacterium _mediated method, and 0.57 to 0.66 for the biolistic method. Our results suggest that it is better to compare the number of intact expression cassettes instead of the total copy number of the transgene in demonstrating their influence on the level of transgene expression. This is the first report on the frequency of expression cassette rearrangement in transgenic plants transformed with the same plasmid by two different transformation methods.