This review focuses on the application of process engineering in electrochemical energy conversion and storage devices innovation. For polymer electrolyte based devices, it highlights that a strategic simple switch fr...This review focuses on the application of process engineering in electrochemical energy conversion and storage devices innovation. For polymer electrolyte based devices, it highlights that a strategic simple switch from proton exchange membranes(PEMs) to hydroxide exchange membranes(HEMs) may lead to a new-generation of affordable electrochemical energy devices including fuel cells, electrolyzers, and solar hydrogen generators. For lithium-ion batteries, a series of advancements in design and chemistry are required for electric vehicle and energy storage applications. Manufacturing process development and optimization of the LiF eP O_4/C cathode materials and several emerging novel anode materials are also discussed using the authors' work as examples.Design and manufacturing process of lithium-ion battery electrodes are introduced in detail, and modeling and optimization of large-scale lithium-ion batteries are also presented. Electrochemical energy materials and device innovations can be further prompted by better understanding of the fundamental transport phenomena involved in unit operations.展开更多
The paper presents a comprehensive, newly developed software – poROSE(poROus materials examination SoftwarE) for the qualitative and quantitative assessment of porous materials and analysis methodologies developed by...The paper presents a comprehensive, newly developed software – poROSE(poROus materials examination SoftwarE) for the qualitative and quantitative assessment of porous materials and analysis methodologies developed by the authors as a solution for emerging challenges. A low porosity rock sample was analyzed and thanks to the developed and implemented methodologies in poROSE software, the main geometrical properties were calculated. A tool was also used in preprocessing part of the computational analysis to prepare a geometrical representation of the porous material. The basic functions as elimination of blind pores in the geometrical model were completed and the geometrical model was exported for CFD software. As a result, it was possible to carry out calculations of the basic properties of the analyzed porous material sample. The developed tool allows to carry out quantitative and qualitative analysis to determine the most important properties characterized porous materials. In presented tool the input data can be images from X-ray computed tomography(CT), scanning electron microscope(SEM) or focused ion beam with scanning electron microscope(FIB-SEM) in grey level. A geometric model developed in the proper format can be used as an input to modeling mass, momentum and heat transfer, as well as, in strength or thermo-strength analysis of any porous materials. In this example, thermal analysis was carried out on the skeleton of rock sample. Moreover, thermal conductivity was estimated using empirical equations.展开更多
Heine is an iron-containing tetrapyrrole that plays a critical role in regulating a variety of biological processes including oxy- gen and electron transport, gas sensing, signal transduction, biological clock, and mi...Heine is an iron-containing tetrapyrrole that plays a critical role in regulating a variety of biological processes including oxy- gen and electron transport, gas sensing, signal transduction, biological clock, and microRNA processing. Most metazoan cells synthesize heine via a conserved pathway comprised of eight enzyme-cataiyzed reactions. Heme can also be acquired from food or extracellular environment. Cellular heine homeostasis is maintained through the coordinated regulation of synthesis, transport, and degradation. This review presents the current knowledge of the synthesis and transport of heine in metazoans and highlights recent advances in the regulation of these pathways.展开更多
基金Supported by the National Basic Research Program of China(2014CB239703)the National Natural Science Foundation of China(21336003)the Science and Technology Commission of Shanghai Municipality(14DZ2250800)
文摘This review focuses on the application of process engineering in electrochemical energy conversion and storage devices innovation. For polymer electrolyte based devices, it highlights that a strategic simple switch from proton exchange membranes(PEMs) to hydroxide exchange membranes(HEMs) may lead to a new-generation of affordable electrochemical energy devices including fuel cells, electrolyzers, and solar hydrogen generators. For lithium-ion batteries, a series of advancements in design and chemistry are required for electric vehicle and energy storage applications. Manufacturing process development and optimization of the LiF eP O_4/C cathode materials and several emerging novel anode materials are also discussed using the authors' work as examples.Design and manufacturing process of lithium-ion battery electrodes are introduced in detail, and modeling and optimization of large-scale lithium-ion batteries are also presented. Electrochemical energy materials and device innovations can be further prompted by better understanding of the fundamental transport phenomena involved in unit operations.
基金Project is financed by the National Centre for Research and Development in Poland,program LIDER VI,project no. LIDER/319/L–6/14/NCBR/2015: Innovative method of unconventional oil and gas reservoirs interpretation using computed X-ray tomography
文摘The paper presents a comprehensive, newly developed software – poROSE(poROus materials examination SoftwarE) for the qualitative and quantitative assessment of porous materials and analysis methodologies developed by the authors as a solution for emerging challenges. A low porosity rock sample was analyzed and thanks to the developed and implemented methodologies in poROSE software, the main geometrical properties were calculated. A tool was also used in preprocessing part of the computational analysis to prepare a geometrical representation of the porous material. The basic functions as elimination of blind pores in the geometrical model were completed and the geometrical model was exported for CFD software. As a result, it was possible to carry out calculations of the basic properties of the analyzed porous material sample. The developed tool allows to carry out quantitative and qualitative analysis to determine the most important properties characterized porous materials. In presented tool the input data can be images from X-ray computed tomography(CT), scanning electron microscope(SEM) or focused ion beam with scanning electron microscope(FIB-SEM) in grey level. A geometric model developed in the proper format can be used as an input to modeling mass, momentum and heat transfer, as well as, in strength or thermo-strength analysis of any porous materials. In this example, thermal analysis was carried out on the skeleton of rock sample. Moreover, thermal conductivity was estimated using empirical equations.
基金supported by the National Natural Science Foundation of China(31371435)the National Key Basic Research Program of China(2015CB150300)+1 种基金the Fundamental Research Funds for the Central Universitiesthe Thousand Youth Talents Program of China
文摘Heine is an iron-containing tetrapyrrole that plays a critical role in regulating a variety of biological processes including oxy- gen and electron transport, gas sensing, signal transduction, biological clock, and microRNA processing. Most metazoan cells synthesize heine via a conserved pathway comprised of eight enzyme-cataiyzed reactions. Heme can also be acquired from food or extracellular environment. Cellular heine homeostasis is maintained through the coordinated regulation of synthesis, transport, and degradation. This review presents the current knowledge of the synthesis and transport of heine in metazoans and highlights recent advances in the regulation of these pathways.