We investigate the squeezing properties of the cavity field in the degenerate two-photon Jaynes Cummings model. Compared with the one-photon Jaynes-Cummings model, the squeezing is more pronounced in the case of two-p...We investigate the squeezing properties of the cavity field in the degenerate two-photon Jaynes Cummings model. Compared with the one-photon Jaynes-Cummings model, the squeezing is more pronounced in the case of two-photon Jaynes-Cummings model under certain conditions.展开更多
Using the "pseudo-invariant eigen-operator" method we find the energy-gap of the Jaynes-Cummings Hamiltonian model of an atom-cavity system. This model takes the atomic centre-of-mass motion into account. The supers...Using the "pseudo-invariant eigen-operator" method we find the energy-gap of the Jaynes-Cummings Hamiltonian model of an atom-cavity system. This model takes the atomic centre-of-mass motion into account. The supersymmetric structure is involved in the Hamiltonian of an atom-cavity system. By selecting suitable supersymmettic generators and using supersymmetrie transformation the Hamiltonian is diagonalized and energy eigenvectors are obtained.展开更多
A scheme for implementing discrete quantum Fourier transform is proposed via quantum dots embedded in a microcavity, and then some of its applications are investigated, i.e., Deutsch 3ozsa. algorithm and Shor's quant...A scheme for implementing discrete quantum Fourier transform is proposed via quantum dots embedded in a microcavity, and then some of its applications are investigated, i.e., Deutsch 3ozsa. algorithm and Shor's quantum factoring. In particular, the detailed process of implementing one^qubit Deutsch Jozsa algorithm and the factorization of N = 15 are given. The microcavity mode is only virtually excited in the whole interaction, so the effective decoherent has slight effect on the current scheme. These schemes would be an important step to fabricate a solid quantum computer.展开更多
By employing an auxiliary cavity, we investigate the possibility to implement the conditional phase flip (CPF) gate on two atoms confined in separate 1ow-Q cavities by single-photon input-output process, based on th...By employing an auxiliary cavity, we investigate the possibility to implement the conditional phase flip (CPF) gate on two atoms confined in separate 1ow-Q cavities by single-photon input-output process, based on the Faraday rotation. This indicates a universal quantum computing available with sophisticated cavity QED techniques. As examples, we carry out generation of duster states of distant atomic qubits and accomplish a teleportation based on Bell-state measurement in low-Q cavities.展开更多
文摘We investigate the squeezing properties of the cavity field in the degenerate two-photon Jaynes Cummings model. Compared with the one-photon Jaynes-Cummings model, the squeezing is more pronounced in the case of two-photon Jaynes-Cummings model under certain conditions.
基金The project supported by the President Foundation of the Chinese Academy of Sciences and the research fund provided by Graduate School of University of Science and Technology of China
文摘Using the "pseudo-invariant eigen-operator" method we find the energy-gap of the Jaynes-Cummings Hamiltonian model of an atom-cavity system. This model takes the atomic centre-of-mass motion into account. The supersymmetric structure is involved in the Hamiltonian of an atom-cavity system. By selecting suitable supersymmettic generators and using supersymmetrie transformation the Hamiltonian is diagonalized and energy eigenvectors are obtained.
基金Supported by National Natural Science Foundation of China (NSFC) under Grant Nos.60678022 and 10704001the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.20060357008+1 种基金Anhui Provincial Natural Science Foundation under Grant No.070412060the Program of the Education Department of Anhui Province under Grant Nos.KJ2008A28ZC,KJ2008B83ZC,KJ2008B265,and 2009A048Z
文摘A scheme for implementing discrete quantum Fourier transform is proposed via quantum dots embedded in a microcavity, and then some of its applications are investigated, i.e., Deutsch 3ozsa. algorithm and Shor's quantum factoring. In particular, the detailed process of implementing one^qubit Deutsch Jozsa algorithm and the factorization of N = 15 are given. The microcavity mode is only virtually excited in the whole interaction, so the effective decoherent has slight effect on the current scheme. These schemes would be an important step to fabricate a solid quantum computer.
基金Supported by National Natural Science Foundation of China under Grant Nos.10774163,11104326,11004226,11174035National Basic Research Program of China(973Program)under Grant Nos.2011CB921803,2012CB921704China Postdoctoral Science Foundation Funded Project under Grant No.2012M510342
文摘By employing an auxiliary cavity, we investigate the possibility to implement the conditional phase flip (CPF) gate on two atoms confined in separate 1ow-Q cavities by single-photon input-output process, based on the Faraday rotation. This indicates a universal quantum computing available with sophisticated cavity QED techniques. As examples, we carry out generation of duster states of distant atomic qubits and accomplish a teleportation based on Bell-state measurement in low-Q cavities.