为提高转子故障分类与辨识的准确率,围绕故障数据的降维问题开展了研究工作。在构造了多核函数的一种特殊形式多尺度核函数前提下,研究了多尺度核函数主成分分析(Multi-Scale Kernel Principal Component Analysis,MSKPCA)法在转子故障...为提高转子故障分类与辨识的准确率,围绕故障数据的降维问题开展了研究工作。在构造了多核函数的一种特殊形式多尺度核函数前提下,研究了多尺度核函数主成分分析(Multi-Scale Kernel Principal Component Analysis,MSKPCA)法在转子故障原始特征集降维中的应用途径。将获得的新的故障特征集输入到支持向量机(SVM)进行训练与辨识,建立了具有多尺度核多层核的转子故障诊断模型。研究结果表明,在多尺度核主成分分析法中合理地选用多尺度核函数,能够更好地提取转子故障不同尺度下的敏感信息,可为转子故障辨识提供更加精确的样本,能有效地提高转子故障诊断的准确率。该研究为转子系统故障数据特征降维提供了一种新方法,为核方法在转子故障诊断中的应用提供了新的思路。展开更多
文摘为提高转子故障分类与辨识的准确率,围绕故障数据的降维问题开展了研究工作。在构造了多核函数的一种特殊形式多尺度核函数前提下,研究了多尺度核函数主成分分析(Multi-Scale Kernel Principal Component Analysis,MSKPCA)法在转子故障原始特征集降维中的应用途径。将获得的新的故障特征集输入到支持向量机(SVM)进行训练与辨识,建立了具有多尺度核多层核的转子故障诊断模型。研究结果表明,在多尺度核主成分分析法中合理地选用多尺度核函数,能够更好地提取转子故障不同尺度下的敏感信息,可为转子故障辨识提供更加精确的样本,能有效地提高转子故障诊断的准确率。该研究为转子系统故障数据特征降维提供了一种新方法,为核方法在转子故障诊断中的应用提供了新的思路。