Naturally occurring microRNAs (miRNAs), small non-coding RNAs of 19 to 24 nucleotides (nt), are encoded in the genomes of invertebrates, vertebrates, and plants. miRNAs act as regulators of gene expression during deve...Naturally occurring microRNAs (miRNAs), small non-coding RNAs of 19 to 24 nucleotides (nt), are encoded in the genomes of invertebrates, vertebrates, and plants. miRNAs act as regulators of gene expression during development and differentiation at the transcriptional, posttranscriptional, and/or translational levels, although most target genes are still elusive. Many miRNAs are conserved in sequence between distantly related organisms, suggesting that these molecules participate in essential processes. In this review, we present principles related to the basic and translational research that has emerged in the last decade, a period that can be truly considered the "miRNA revolution" in molecular oncology. These principles include the regulation mechanism of miRNA expression, functions of miRNAs in cancers, diagnostic values and therapeutic potentials of miRNAs. Furthermore, we present a compendium of information about the main miRNAs that have been identified in the last several years as playing important roles in cancers. Also, we orient the reader to several additional reviews that may provide a deeper understanding of this new and exciting field of research.展开更多
MicroRNAs (miRNAs) are endogenous, small, non-coding RNAs, which are capable of silencing gene expression at the post-transcriptional level. In this study, we report that miR-205 is significantly underexpressed in b...MicroRNAs (miRNAs) are endogenous, small, non-coding RNAs, which are capable of silencing gene expression at the post-transcriptional level. In this study, we report that miR-205 is significantly underexpressed in breast tumor compared to the matched normal breast tissue. Similarly, breast cancer cell lines, including MCF-7 and MDA-MB- 231, express a lower level miR-205 than the non-malignant MCF-10A cells. Of interest, ectopic expression of miR-205 significantly inhibits cell proliferation and anchorage independent growth, as well as cell invasion. Furthermore, miR- 205 was shown to suppress lung metastasis in an animal model. Finally, western blot combined with the luciferase reporter assays demonstrate that ErbB3 and vascular endothelial growth factor A (VEGF-A) are direct targets for miR-205, and this miR-205-mediated suppression is likely through the direct interaction with the putative miR-205 binding site in the 3'-untranslated region (3'-UTR) of ErbB3 and VEGF-A. Together, these results suggest that miR- 205 is a tumor suppressor in breast cancer.展开更多
MicroRNAs are short regulatory RNAs that negatively modulate gene expression at the post-transcriptional level, and are deeply involved in the pathogenesis of several types of cancers. To investigate whether specific ...MicroRNAs are short regulatory RNAs that negatively modulate gene expression at the post-transcriptional level, and are deeply involved in the pathogenesis of several types of cancers. To investigate whether specific miRNAs and their target genes participate in the molecular pathogenesis of laryngeal carcinoma, oligonucleotide microarrays were used to assess the differential expression profiles of microRNAs and mRNAs in laryngeal carcinoma tissues compared with normal tissues. The oncogeuic miRNA, microRNA-21 (miR-21), was found to he npregulated in laryngeal carcinoma tissues. Knockdown of miR-21 by specific antisense oligonucleotides inhibited the proliferation potential of HEp-2 cells, whereas overexpression of miR-21 elevated growth activity of the cells, as detected by the colony formation assay. The cell number reduction caused by miR-21 inhibition was due to the loss of control of the G1-S phase transition, instead of a noticeable increase in apoptosis. Subsequently, a new target gene of miR- 21, BTG2, was found to be downregulated in laryngeal carcinoma tissues. BTG2 is known to act as a pan-cell cycle regulator and tumor suppressor. These findings indicate that aberrant expression of miR-21 may contribute to the malignant phenotype of laryngeal carcinoma by maintaining a low level of BTG2. The identification of the oneogenic miR-21 and its target gene, BTG2, in laryngeal carcinoma is potentially valuable for cancer diagnosis and therapy.展开更多
文摘Naturally occurring microRNAs (miRNAs), small non-coding RNAs of 19 to 24 nucleotides (nt), are encoded in the genomes of invertebrates, vertebrates, and plants. miRNAs act as regulators of gene expression during development and differentiation at the transcriptional, posttranscriptional, and/or translational levels, although most target genes are still elusive. Many miRNAs are conserved in sequence between distantly related organisms, suggesting that these molecules participate in essential processes. In this review, we present principles related to the basic and translational research that has emerged in the last decade, a period that can be truly considered the "miRNA revolution" in molecular oncology. These principles include the regulation mechanism of miRNA expression, functions of miRNAs in cancers, diagnostic values and therapeutic potentials of miRNAs. Furthermore, we present a compendium of information about the main miRNAs that have been identified in the last several years as playing important roles in cancers. Also, we orient the reader to several additional reviews that may provide a deeper understanding of this new and exciting field of research.
文摘MicroRNAs (miRNAs) are endogenous, small, non-coding RNAs, which are capable of silencing gene expression at the post-transcriptional level. In this study, we report that miR-205 is significantly underexpressed in breast tumor compared to the matched normal breast tissue. Similarly, breast cancer cell lines, including MCF-7 and MDA-MB- 231, express a lower level miR-205 than the non-malignant MCF-10A cells. Of interest, ectopic expression of miR-205 significantly inhibits cell proliferation and anchorage independent growth, as well as cell invasion. Furthermore, miR- 205 was shown to suppress lung metastasis in an animal model. Finally, western blot combined with the luciferase reporter assays demonstrate that ErbB3 and vascular endothelial growth factor A (VEGF-A) are direct targets for miR-205, and this miR-205-mediated suppression is likely through the direct interaction with the putative miR-205 binding site in the 3'-untranslated region (3'-UTR) of ErbB3 and VEGF-A. Together, these results suggest that miR- 205 is a tumor suppressor in breast cancer.
基金Acknowledgments This work was supported by grants from the National Natural Science Foundation of China (No. 30873017) and the Key Program of the Natural Science Foundation of Tianjing (No. 08JCZDJC23300). We thank Tianjin First Center Hospital for providing human laryngeal tissue samples. We also thank the College of Public Health of Tianjin Medical University for the technical assistance in fluorescent detection. The ArrayExpress accession numbers of miRNA microarray design and cDNA microarray design are A-MEXP-1506 and A-MEXP-1511. The ArrayExpress accession numbers of miRNA microarray experiment and eDNA microarray experiment are E-MEXP-2039 and E-MEXP-2056.
文摘MicroRNAs are short regulatory RNAs that negatively modulate gene expression at the post-transcriptional level, and are deeply involved in the pathogenesis of several types of cancers. To investigate whether specific miRNAs and their target genes participate in the molecular pathogenesis of laryngeal carcinoma, oligonucleotide microarrays were used to assess the differential expression profiles of microRNAs and mRNAs in laryngeal carcinoma tissues compared with normal tissues. The oncogeuic miRNA, microRNA-21 (miR-21), was found to he npregulated in laryngeal carcinoma tissues. Knockdown of miR-21 by specific antisense oligonucleotides inhibited the proliferation potential of HEp-2 cells, whereas overexpression of miR-21 elevated growth activity of the cells, as detected by the colony formation assay. The cell number reduction caused by miR-21 inhibition was due to the loss of control of the G1-S phase transition, instead of a noticeable increase in apoptosis. Subsequently, a new target gene of miR- 21, BTG2, was found to be downregulated in laryngeal carcinoma tissues. BTG2 is known to act as a pan-cell cycle regulator and tumor suppressor. These findings indicate that aberrant expression of miR-21 may contribute to the malignant phenotype of laryngeal carcinoma by maintaining a low level of BTG2. The identification of the oneogenic miR-21 and its target gene, BTG2, in laryngeal carcinoma is potentially valuable for cancer diagnosis and therapy.