As a new attempt, equal channel angular extrusion (ECAE) of nickel-titanium shape memory alloy (NiTi SMA) tube was investigated by means of process experiment, finite element method (FEM) and microscopy. NiTi SM...As a new attempt, equal channel angular extrusion (ECAE) of nickel-titanium shape memory alloy (NiTi SMA) tube was investigated by means of process experiment, finite element method (FEM) and microscopy. NiTi SMA tube with the steel core in it was inserted into the steel can during ECAE of NiTi SMA tube. Based on rigid-viscoplastic FEM, multiple coupled boundary conditions and multiple constitutive models were used for finite element simulation of ECAE of NiTi SMA tube, where the effective stress field, the effective strain field and the velocity field were obtained. Finite element simulation results are in good accordance with the experimental ones. Finite element simulation results reveal that the velocity field shows the minimum value in the corner of NiTi SMA tube, where severe shear deformation occurs. Microstructural observation results reveal that severe plastic deformation leads to a certain grain orientation as well as occurrence of substructures in the grain interior and dynamic recovery occurs during ECAE of NiTi SMA tube. ECAE of NiTi SMA tube provides a new approach to manufacturing ultrafine-grained NiTi SMA tube.展开更多
The effect of recovery heating rate on shape memory effect of the up-quenched Cu-8.88Al-10.27Mn(mass fraction, %) alloy was investigated by optical microscopy, electron transmission microscopy(TEM) and electrical ...The effect of recovery heating rate on shape memory effect of the up-quenched Cu-8.88Al-10.27Mn(mass fraction, %) alloy was investigated by optical microscopy, electron transmission microscopy(TEM) and electrical resistivity measurement. It is found that the shape recovery rate decreases as the heating rate decreases. It can reach 75% when the heating rate is 20 ℃/min, while it is only 8% when the heating rate is 1 ℃/min. In situ microstructure observation indicates that the dependence of shape memory effect on recovery heating rate is caused by the stabilization of twinned martensite induced by deformation. The analysis of electrical resistivity shows that the stabilization of twinned martensite may be ascribed to formation of compound defects of vacancies and dislocations at the boundaries of twinned martensite during the slow heating. The compound defects prevent the reverse transformation of twinned martensite.展开更多
The active control of rotor vibration was studied while shape memory alloy (SMA) spring component was chosen as bearing of rotor system. The vibration of rotor system was controlled by the phase transformation of SM...The active control of rotor vibration was studied while shape memory alloy (SMA) spring component was chosen as bearing of rotor system. The vibration of rotor system was controlled by the phase transformation of SMA with electric heating method. The SMA spring component has nonlinear coupling problem of thermal stress and thermal elasticity,because thermal constants α,β and elasticity constants λ,G vary with temperature when temperature changes sharply. Because δ,ε were both small parameters, their square items could be ignored and approximate results were obtained by perturbation. The characters of α,β,λ,G changing with temperature were analyzed. Results show that the character of thermal diffusivity α changes with temperature, which cannot influence U,Ψ,So the nonlinearity of α can be ignored; the character of β changes with temperature, which cannot influence U, but influences Ψ at high temperature; the character of λ,G change with temperature, which cannot influence Ψ, but influences U with U(01) ε. The more λ,G, the more their influence on U; the nonlinearity of βTρcvεkk influences U and Ψ, which must be calculated.展开更多
Objective To determine whether learning deficits could be seen in transgenic mice expressing human amyloid precursor protein 770 (APP 770 ) Methods Female heterozygous transgenic and nontransgenic mice aged 3,...Objective To determine whether learning deficits could be seen in transgenic mice expressing human amyloid precursor protein 770 (APP 770 ) Methods Female heterozygous transgenic and nontransgenic mice aged 3, 6 and 9 months at the start of testing were used, with eight mice in each age group All mice were subjected to various behavioral tasks including the Y maze task and the Morris water maze After behavioral testing, the mice were sacrificed, and their brain tissues were used for measuring the choline acetyltransferase (ChAT) activity Results Nine month old transgenic mice exhibited spatial learning deficits in the Morris water maze and in spontaneous alternation in the Y maze, compared with those of the age matched non transgenic mice The behavioral changes accompanied a reduction of ChAT activity in the cortical and hippocampal regions of transgenic mice On the other hand, these behavioral deficits were not observed in transgenic mice either at 3 or at 6 months of age, in which ChAT activity remained unchanged Conclusions The present results show that the learning impairment observed in 9 month old APP 770 transgenic mice are accompanied by a decrease in cortical and hippocampal ChAT activities This suggests that cholinergic deficits may be involved in the learning impairment observed in these APP 770 mice This model will be a useful tool in advancing our understanding of the relationship between the cholinergic system and the cognitive deficits observed in Alzheimer's disease (AD)展开更多
The influence of stresses on martensitic transformation in Ni50Mn19Fe6Ga25 melt-spun ribbons was studied. X-ray diffraction examination shows that the ribbon has a pure cubic L21 phase at room temperature and that the...The influence of stresses on martensitic transformation in Ni50Mn19Fe6Ga25 melt-spun ribbons was studied. X-ray diffraction examination shows that the ribbon has a pure cubic L21 phase at room temperature and that the ribbon surface exhibits [100] preferentially oriented texture, while the [110] axis is about 45° tilted from the normal of the ribbon. By calculating the d spacing at different angles with the length direction of the ribbon, the tension was observed. It was found that the direction of the stress was along [010] direction of the oriented textured grains. During cooling, there is no obvious structural transition observed in as-spun ribbons. However, when the ribbons were annealed at 900 K for 24 h, the tension along [010] direction disappeared and the structural transition from cubic to tetragonal occurred obviously during cooling. It indicates that it is the tension along [010] direction to suppress the martensitic transformation in the as-spun ribbons.展开更多
Herein,a facile and highly efficient synthetic method to prepare organic photothermal materials with high photo-stability and outstanding photothermal performance is reported.Through direct polymerization of commercia...Herein,a facile and highly efficient synthetic method to prepare organic photothermal materials with high photo-stability and outstanding photothermal performance is reported.Through direct polymerization of commercial aromatic monomers in the presence of anhydrous aluminium chloride and dichloromethane,four kinds of conjugated microporous polymers(CMPs)were obtained.Detailed structural analysis confirmed that the resultant CMPs possessed abundant micropores with an extendedπ-conjugated skeleton.Under near-infrared(NIR)light irradiation(808 nm,1.0 W cm−2),all the CMPs showed fast heating-up behavior with their maximum temperatures higher than 150℃.Moreover,the efficiency of photothermal conversion(η)of the CMPs was found to increase linearly with the increase in the number of conjugated benzene rings within the monomer.Poly-TPE from tetraphenylethylene(TPE)and Poly-TP from o-terphenyl(TP)showed highηvalues of over 47%.Poly-TPE was additionally used as a photothermal filler to remotely and spatially control the shape recovery of thermal-sensitive shape memory polymers(SMPs),while its introduction(1 wt%)had little influence on the thermal and mechanical properties of the polymer matrixes.Owing to their excellent NIR photothermal performance as well as a one-step synthetic preparation,these CMPs may be promising photothermal materials for practical applications.展开更多
基金Project(51071056)supported by the National Natural Science Foundation of ChinaProjects(HEUCF121712,HEUCF201317002)supported by the Fundamental Research Funds for the Central Universities of China
文摘As a new attempt, equal channel angular extrusion (ECAE) of nickel-titanium shape memory alloy (NiTi SMA) tube was investigated by means of process experiment, finite element method (FEM) and microscopy. NiTi SMA tube with the steel core in it was inserted into the steel can during ECAE of NiTi SMA tube. Based on rigid-viscoplastic FEM, multiple coupled boundary conditions and multiple constitutive models were used for finite element simulation of ECAE of NiTi SMA tube, where the effective stress field, the effective strain field and the velocity field were obtained. Finite element simulation results are in good accordance with the experimental ones. Finite element simulation results reveal that the velocity field shows the minimum value in the corner of NiTi SMA tube, where severe shear deformation occurs. Microstructural observation results reveal that severe plastic deformation leads to a certain grain orientation as well as occurrence of substructures in the grain interior and dynamic recovery occurs during ECAE of NiTi SMA tube. ECAE of NiTi SMA tube provides a new approach to manufacturing ultrafine-grained NiTi SMA tube.
文摘The effect of recovery heating rate on shape memory effect of the up-quenched Cu-8.88Al-10.27Mn(mass fraction, %) alloy was investigated by optical microscopy, electron transmission microscopy(TEM) and electrical resistivity measurement. It is found that the shape recovery rate decreases as the heating rate decreases. It can reach 75% when the heating rate is 20 ℃/min, while it is only 8% when the heating rate is 1 ℃/min. In situ microstructure observation indicates that the dependence of shape memory effect on recovery heating rate is caused by the stabilization of twinned martensite induced by deformation. The analysis of electrical resistivity shows that the stabilization of twinned martensite may be ascribed to formation of compound defects of vacancies and dislocations at the boundaries of twinned martensite during the slow heating. The compound defects prevent the reverse transformation of twinned martensite.
文摘The active control of rotor vibration was studied while shape memory alloy (SMA) spring component was chosen as bearing of rotor system. The vibration of rotor system was controlled by the phase transformation of SMA with electric heating method. The SMA spring component has nonlinear coupling problem of thermal stress and thermal elasticity,because thermal constants α,β and elasticity constants λ,G vary with temperature when temperature changes sharply. Because δ,ε were both small parameters, their square items could be ignored and approximate results were obtained by perturbation. The characters of α,β,λ,G changing with temperature were analyzed. Results show that the character of thermal diffusivity α changes with temperature, which cannot influence U,Ψ,So the nonlinearity of α can be ignored; the character of β changes with temperature, which cannot influence U, but influences Ψ at high temperature; the character of λ,G change with temperature, which cannot influence Ψ, but influences U with U(01) ε. The more λ,G, the more their influence on U; the nonlinearity of βTρcvεkk influences U and Ψ, which must be calculated.
文摘Objective To determine whether learning deficits could be seen in transgenic mice expressing human amyloid precursor protein 770 (APP 770 ) Methods Female heterozygous transgenic and nontransgenic mice aged 3, 6 and 9 months at the start of testing were used, with eight mice in each age group All mice were subjected to various behavioral tasks including the Y maze task and the Morris water maze After behavioral testing, the mice were sacrificed, and their brain tissues were used for measuring the choline acetyltransferase (ChAT) activity Results Nine month old transgenic mice exhibited spatial learning deficits in the Morris water maze and in spontaneous alternation in the Y maze, compared with those of the age matched non transgenic mice The behavioral changes accompanied a reduction of ChAT activity in the cortical and hippocampal regions of transgenic mice On the other hand, these behavioral deficits were not observed in transgenic mice either at 3 or at 6 months of age, in which ChAT activity remained unchanged Conclusions The present results show that the learning impairment observed in 9 month old APP 770 transgenic mice are accompanied by a decrease in cortical and hippocampal ChAT activities This suggests that cholinergic deficits may be involved in the learning impairment observed in these APP 770 mice This model will be a useful tool in advancing our understanding of the relationship between the cholinergic system and the cognitive deficits observed in Alzheimer's disease (AD)
基金the National Natural Science Foundation of China (Grant No.50271023) the Natural Science Foundation of Hebei Province (Grant No. 503031).
文摘The influence of stresses on martensitic transformation in Ni50Mn19Fe6Ga25 melt-spun ribbons was studied. X-ray diffraction examination shows that the ribbon has a pure cubic L21 phase at room temperature and that the ribbon surface exhibits [100] preferentially oriented texture, while the [110] axis is about 45° tilted from the normal of the ribbon. By calculating the d spacing at different angles with the length direction of the ribbon, the tension was observed. It was found that the direction of the stress was along [010] direction of the oriented textured grains. During cooling, there is no obvious structural transition observed in as-spun ribbons. However, when the ribbons were annealed at 900 K for 24 h, the tension along [010] direction disappeared and the structural transition from cubic to tetragonal occurred obviously during cooling. It indicates that it is the tension along [010] direction to suppress the martensitic transformation in the as-spun ribbons.
基金the National Natural Science Foundation of China(51503231 and 21374136)Guangdong Innovative and Entrepreneurial Research Team Program(2013S086)the Fundamental Research Funds for the Central Universities(17lgjc03 and 18lgpy04)。
文摘Herein,a facile and highly efficient synthetic method to prepare organic photothermal materials with high photo-stability and outstanding photothermal performance is reported.Through direct polymerization of commercial aromatic monomers in the presence of anhydrous aluminium chloride and dichloromethane,four kinds of conjugated microporous polymers(CMPs)were obtained.Detailed structural analysis confirmed that the resultant CMPs possessed abundant micropores with an extendedπ-conjugated skeleton.Under near-infrared(NIR)light irradiation(808 nm,1.0 W cm−2),all the CMPs showed fast heating-up behavior with their maximum temperatures higher than 150℃.Moreover,the efficiency of photothermal conversion(η)of the CMPs was found to increase linearly with the increase in the number of conjugated benzene rings within the monomer.Poly-TPE from tetraphenylethylene(TPE)and Poly-TP from o-terphenyl(TP)showed highηvalues of over 47%.Poly-TPE was additionally used as a photothermal filler to remotely and spatially control the shape recovery of thermal-sensitive shape memory polymers(SMPs),while its introduction(1 wt%)had little influence on the thermal and mechanical properties of the polymer matrixes.Owing to their excellent NIR photothermal performance as well as a one-step synthetic preparation,these CMPs may be promising photothermal materials for practical applications.