Based upon the covariant prolongation structures theory, we construct the sl(2, R)×R(p) prolongation structure for Konno-Asai-Kakuhata equation. By taking two and one-dimensional prolongation spaces, we obtai...Based upon the covariant prolongation structures theory, we construct the sl(2, R)×R(p) prolongation structure for Konno-Asai-Kakuhata equation. By taking two and one-dimensional prolongation spaces, we obtain the inverse scattering equations given by Konno et al. and the corresponding Riccati equation. The Baecklund transformations are also presented.展开更多
In this paper, negatons, positons, and complexiton solutions of higher order for a non-isospectral KdV equation, the KdV equation with loss and non-uniformity terms are obtained through the bilinear Baicklund transfor...In this paper, negatons, positons, and complexiton solutions of higher order for a non-isospectral KdV equation, the KdV equation with loss and non-uniformity terms are obtained through the bilinear Baicklund transformation. Further, the properties of some solutions are shown by some figures made by using Maple.展开更多
The paper makes survey of operating principle of power management of photovoltaic system with supercapacitors and a maximum power tracker (MPT) control to achieve the maximum efficiency. Supercapacitors are well sui...The paper makes survey of operating principle of power management of photovoltaic system with supercapacitors and a maximum power tracker (MPT) control to achieve the maximum efficiency. Supercapacitors are well suited to replace classical batteries and conventional capacitors in photovoltaic applications to improve a dynamic behaviors and life-time. It describes the advantages of a supercapacitors solution and shows the results of comparison with convenient batteries. The paper presents different topologies of basic photovoltaic concepts with dc-dc converters and supercapacitors according to the power dimension. The mathematical equations describing the photovoltaic cells, temperature analyses and mathematical solution of MPT are shown in the paper and supported by measurements. The mathematical models were applied in the design of 50 W and 6 kW photovoltaic sources with MPT and supercapacitors. Both models were verified using experimental measurements on the photovoltaic setup.展开更多
文摘Based upon the covariant prolongation structures theory, we construct the sl(2, R)×R(p) prolongation structure for Konno-Asai-Kakuhata equation. By taking two and one-dimensional prolongation spaces, we obtain the inverse scattering equations given by Konno et al. and the corresponding Riccati equation. The Baecklund transformations are also presented.
基金The project partially supported by the State Key Basic Research Program of China under Grant No. 2004CB318000
文摘In this paper, negatons, positons, and complexiton solutions of higher order for a non-isospectral KdV equation, the KdV equation with loss and non-uniformity terms are obtained through the bilinear Baicklund transformation. Further, the properties of some solutions are shown by some figures made by using Maple.
文摘The paper makes survey of operating principle of power management of photovoltaic system with supercapacitors and a maximum power tracker (MPT) control to achieve the maximum efficiency. Supercapacitors are well suited to replace classical batteries and conventional capacitors in photovoltaic applications to improve a dynamic behaviors and life-time. It describes the advantages of a supercapacitors solution and shows the results of comparison with convenient batteries. The paper presents different topologies of basic photovoltaic concepts with dc-dc converters and supercapacitors according to the power dimension. The mathematical equations describing the photovoltaic cells, temperature analyses and mathematical solution of MPT are shown in the paper and supported by measurements. The mathematical models were applied in the design of 50 W and 6 kW photovoltaic sources with MPT and supercapacitors. Both models were verified using experimental measurements on the photovoltaic setup.