The micro-combustion chamber is the key component for micro-TPV systems. To improve the combustor wall temperature level and its uniformity and efficiency, an improved flat micro-combustor with a front cavity is built...The micro-combustion chamber is the key component for micro-TPV systems. To improve the combustor wall temperature level and its uniformity and efficiency, an improved flat micro-combustor with a front cavity is built, and the combustion performance of the original and improved combustors of premixed H2/air flames under various inlet velocities and equivalence ratios is numerically investigated. The effects of the front cavity height and length on the outer wall temperature and efficiency are also discussed. The front cavity significantly improves the average outer wall temperature, outer wall temperature uniformity, and combustion efficiency of the micro-combustor, increases the area of the high temperature zone, and enhances the heat transfer between the burned blends and inner walls. The micro-combustor with the front cavity length of 2.0 mm and height of 0.5 mm is suitable for micro-TPV system application due to the relatively high outer wall temperature, combustion efficiency, and the most uniform outer wall temperature.展开更多
We investigate the equivalence of quantum states under local unitary transformations. A complete set of invariants under local unitary transformations are presented for a class of non-generic three-qubit mixed states....We investigate the equivalence of quantum states under local unitary transformations. A complete set of invariants under local unitary transformations are presented for a class of non-generic three-qubit mixed states. It is shown that two such states in this class are locally equivalent if and only if all these invariants have equal values for them.展开更多
Ocean waves can directly drive WECs (wave energy converters) to perform two types of motion--reciprocating motion and unidirectional rotary motion. In general, the efficiency of a reciprocating WEC is strongly wave-...Ocean waves can directly drive WECs (wave energy converters) to perform two types of motion--reciprocating motion and unidirectional rotary motion. In general, the efficiency of a reciprocating WEC is strongly wave-frequency dependent, whereas the efficiency of a rotary WEC can be somewhat wave-frequency independent. To date, a huge majority of WEC technologies under development in industry belong to the reciprocating class, and only a few WEC concepts fall in the unidirectional rotary class. In the present work, a wave-driven rotor for unidirectional rotary motion was proposed and characterized. A numerical tool has been developed for characterization of the rotor's unidirectional rotary tendency. The tool included a wave model and a drag force model. Simple circular tubes were used as blades in a basic rotor design. This basic design demonstrated strong potential for unidirectional rotary motion at a proper rotor submersion level and under various wave conditions. Two improved designs were yielded from the basic design. In one improved design, the original circular tubes were replaced with cylindrical shells of semicircular cross section as new blades. In another design, the semicircular shells were further modified to become one-way foldable. The two improvements significantly enhanced the rotors' unidirectional rotary tendency in waves, which has been verified by numerical simulation. Broad ranges of wave parameters and the submersion level have been numerically explored on the two improved rotor designs in conjunction with dimensional analysis.展开更多
基金Project(11802336) supported by the National Natural Science Foundation of China
文摘The micro-combustion chamber is the key component for micro-TPV systems. To improve the combustor wall temperature level and its uniformity and efficiency, an improved flat micro-combustor with a front cavity is built, and the combustion performance of the original and improved combustors of premixed H2/air flames under various inlet velocities and equivalence ratios is numerically investigated. The effects of the front cavity height and length on the outer wall temperature and efficiency are also discussed. The front cavity significantly improves the average outer wall temperature, outer wall temperature uniformity, and combustion efficiency of the micro-combustor, increases the area of the high temperature zone, and enhances the heat transfer between the burned blends and inner walls. The micro-combustor with the front cavity length of 2.0 mm and height of 0.5 mm is suitable for micro-TPV system application due to the relatively high outer wall temperature, combustion efficiency, and the most uniform outer wall temperature.
基金The project supported by the National Natural Science Foundation of China under Grant No. 10375038
文摘We investigate the equivalence of quantum states under local unitary transformations. A complete set of invariants under local unitary transformations are presented for a class of non-generic three-qubit mixed states. It is shown that two such states in this class are locally equivalent if and only if all these invariants have equal values for them.
文摘Ocean waves can directly drive WECs (wave energy converters) to perform two types of motion--reciprocating motion and unidirectional rotary motion. In general, the efficiency of a reciprocating WEC is strongly wave-frequency dependent, whereas the efficiency of a rotary WEC can be somewhat wave-frequency independent. To date, a huge majority of WEC technologies under development in industry belong to the reciprocating class, and only a few WEC concepts fall in the unidirectional rotary class. In the present work, a wave-driven rotor for unidirectional rotary motion was proposed and characterized. A numerical tool has been developed for characterization of the rotor's unidirectional rotary tendency. The tool included a wave model and a drag force model. Simple circular tubes were used as blades in a basic rotor design. This basic design demonstrated strong potential for unidirectional rotary motion at a proper rotor submersion level and under various wave conditions. Two improved designs were yielded from the basic design. In one improved design, the original circular tubes were replaced with cylindrical shells of semicircular cross section as new blades. In another design, the semicircular shells were further modified to become one-way foldable. The two improvements significantly enhanced the rotors' unidirectional rotary tendency in waves, which has been verified by numerical simulation. Broad ranges of wave parameters and the submersion level have been numerically explored on the two improved rotor designs in conjunction with dimensional analysis.