A disc-type magneto-rheological fluid damper operating in shear mode is proposed in this paper,which is based on the special characteristics of the magneto-rheological (MR) fluid with rapid, reversible and dramatic ch...A disc-type magneto-rheological fluid damper operating in shear mode is proposed in this paper,which is based on the special characteristics of the magneto-rheological (MR) fluid with rapid, reversible and dramatic change in its rheological properties by the application of an external magnetic field. The magneticfield of the disc-type MR fluid damper is analysed by the finite element method ; the controllability of the disctype MR fluid damper on the dynamic behaviour of a rotor system ; and the effectiveness of the disc-type MR fluid damper in controlling the vibration of a rotor system, are studied in a flexible rotor system with an over-hung disc. It is shown that the magnetic flux density of the disc-type MR fluid damper in the working areas can significantly change with the applied current in the coil ; and that the dynamic behavior of the disc-type MR fluid damper can be varied by the application of an external magnetic field produced by a low voltage electromagnetic coil. The disc-type MR fluid damper can significantly change the dynamic characteristics of a rotor system, provided that the location of the disk-type MR fluid damper is carefully chosen. The disc-type MR fluid damper is a new actuator with good dynamic characteristics for rotating machinery.展开更多
To overcome the limitations of traditional monitoring methods, based on vibration parameter image of rotating machinery, this paper presents an abnormality online monitoring method suitable for rotating machinery usin...To overcome the limitations of traditional monitoring methods, based on vibration parameter image of rotating machinery, this paper presents an abnormality online monitoring method suitable for rotating machinery using the negative selection mechanism of biology immune system. This method uses techniques of biology clone and learning mechanism to improve the negative selection algorithm to generate detectors possessing different monitoring radius, covers the abnormality space effectively, and avoids such problems as the low efficiency of generating detectors, etc. The result of an example applying the presented monitoring method shows that this method can solve the difficulty of obtaining fault samples preferably and extract the turbine state character effectively, it also can detect abnormality by causing various fault of the turbine and obtain the degree of abnormality accurately. The exact monitoring precision of abnormality indicates that this method is feasible and has better on-line quality, accuracy and robustness.展开更多
Due to the coaxial connection of engine, motor and pump, the dynamic characteristics of hybrid construction machinery are changed, which generates a new torsional vibration problem of multi-power sources. To reduce th...Due to the coaxial connection of engine, motor and pump, the dynamic characteristics of hybrid construction machinery are changed, which generates a new torsional vibration problem of multi-power sources. To reduce the torsional vibration of the hybrid construction machinery complex shafting, torsional vibration active control was proposed. The three-mass model of coaxial shafting of hybrid construction machinery was established. The PID control and the fuzzy sliding mode control were chosen to weaken torsional vibration by controlling the motor speed and torque. The simulation results show that the fuzzy sliding mode control has 12% overshoot of the PID control when the engine torque changes. The active control is effective and can realize smooth power switch.展开更多
During screening operation, blinding or clogging of screen perforations generally occurs to reduce the sieving capacity and efficiency. Recently, the flip-flow screening has been widely recognized as a feasible method...During screening operation, blinding or clogging of screen perforations generally occurs to reduce the sieving capacity and efficiency. Recently, the flip-flow screening has been widely recognized as a feasible method to deal with the problem. In this paper, a novel centralized-driving flip-flow screen(CFS) was developed for the separation of fine and moist coal, and the key structures, namely, a centralized-driving mechanism and a quasi-circle beam mounted with the mat were designed for high reliability and stability. By means of a test on an experimental prototype, the effect of some factors, i.e., initial stretch and hardness of the polyurethane panel, respectively, and the rotation speed of the driving motor on the kinematic characteristic of the screen surface was investigated. Results show that without an initial stretch, the sieve mat generates the largest vibratory amplitude while the slacker the sieve mat initially is, the smaller amplitude it will accomplish. And an increase in the rotation speed could cause a rise in the vibratory amplitude. Unlike the two factors, the hardness does not have a definite effect on the kinematic performance, on which a further study is required. Finally, screening processing on a laboratory prototype was conducted to draw the conclusion that the developed CFS also has a high sieving efficiency for the fine and moist coal.展开更多
A method of producing rotating radial electromagnetic force with a separable structure is proposed, and an experimental model was designed on which open loop vibration control experiments were carried out. Experimenta...A method of producing rotating radial electromagnetic force with a separable structure is proposed, and an experimental model was designed on which open loop vibration control experiments were carried out. Experimental results prove that the electromagnetic force designed has a constant magnitude and an uniform speed, and the idea of using an electromagnetic force as an active control in automatic balancing is correct in principle, and practicable in engineering.展开更多
The layout features of unit shafting and their effects on vibration, as well as evaluation criteria, were introduced for a 1000-MW ultra-supercritical turbine-generator unit with Simens technology. Based on vibration ...The layout features of unit shafting and their effects on vibration, as well as evaluation criteria, were introduced for a 1000-MW ultra-supercritical turbine-generator unit with Simens technology. Based on vibration diagnosis and treatment for more than 10 units, some typical vibration faults were summarized, such as the vibration fluctuation of the high pressure (HP) rotor, abnormal vibration increases of the No.3 bearing pedestal and large vibration of the exciter rotor during its critical speed range. The vibration characteristics and the causes of faults and countermeasures were analyzed. Three applications for further illustration were given. The vibration fault identification method, control measures, and applications can provide a reference for vibration diagnoses and treatment of same type units.展开更多
In this study, it shows how the main indicators of torsional vibrations of the crankshaft change when its materials change. In the study, the crankshaft of diesel engine with four cylinders in line was taken, in which...In this study, it shows how the main indicators of torsional vibrations of the crankshaft change when its materials change. In the study, the crankshaft of diesel engine with four cylinders in line was taken, in which the material is changing from steel to cast iron, due to the technological possibilities of production. For study of torsional vibration of crankshaft system, the construction of equivalent reduced scheme is carried. Reduced inertia moments of discs are determined for each crank of crankshaft, by receiving the impact of piston group and rod mass. Reduced rigidities of crank are determined by experimental method. The results show that the rigidity of crank for the same crankshaft varies up to 6%, while the change between crankshafts goes up 10%. At the end, frequency and vibration forms are calculated using Tole-Holxer method. From calculations, it results that the frequencies are 19% smaller, while the vibration forms varies slightly. In this case, the change of the materials leads to the first frequency in the area of engine rotations and it can worsen the level of torsional vibration, therefore, it should check the resonance areas and vibration amplitude.展开更多
An algorithm for computing the 3-D oscillating flow field of the blade passage under the torsional vibra-tion of the rotor is applied to analyze the stability in turbomachines. The induced fiow field responding to bla...An algorithm for computing the 3-D oscillating flow field of the blade passage under the torsional vibra-tion of the rotor is applied to analyze the stability in turbomachines. The induced fiow field responding to blade vibration is computed by Oscillating Fluid Mechanics Method and ParaInetric Polynomial Method. After getting the solution of the unsteady flow field, the work done by the unsteay aerody natnic force acting on the blade can be obtained. The negative or positive work is the criterion of the aeroelastic stability Numerical results indicate that there are instabilities of the torsional vibration in some boency bands.展开更多
The rotating machinery,as a typical example of large and complex mechanical systems,is prone to diversified sorts of mechanical faults,especially on their rotating components.Although they can be collected via vibrati...The rotating machinery,as a typical example of large and complex mechanical systems,is prone to diversified sorts of mechanical faults,especially on their rotating components.Although they can be collected via vibration measurements,the critical fault signatures are always masked by overwhelming interfering contents,therefore difficult to be identified.Moreover,owing to the distinguished time-frequency characteristics of the machinery fault signatures,classical dyadic wavelet transforms(DWTs) are not perfect for detecting them in noisy environments.In order to address the deficiencies of DWTs,a pseudo wavelet system(PWS) is proposed based on the filter constructing strategies of wavelet tight frames.The presented PWS is implemented via a specially devised shift-invariant filterbank structure,which generates non-dyadic wavelet subbands as well as dyadic ones.The PWS offers a finer partition of the vibration signal into the frequency-scale plane.In addition,in order to correctly identify the essential transient signatures produced by the faulty mechanical components,a new signal impulsiveness measure,named spatial spectral ensemble kurtosis(SSEK),is put forward.SSEK is used for selecting the optimal analyzing parameters among the decomposed wavelet subbands so that the masked critical fault signatures can be explicitly recognized.The proposed method has been applied to engineering fault diagnosis cases,in which the processing results showed its effectiveness and superiority to some existing methods.展开更多
During the non-landing measuring of vehicle mounted theodolite, especially under high-speed tracking measurement, the misalignment of theodolite's center of mass and spindle etc. will cause high-frequency vibratio...During the non-landing measuring of vehicle mounted theodolite, especially under high-speed tracking measurement, the misalignment of theodolite's center of mass and spindle etc. will cause high-frequency vibration of theodolite platform, increase the observation error of targets and even unbelievable results. In this paper, a correction method of non-landing measuring of theodolite based on static datum conversion is presented, which can effectively improve the observation accuracy of theodolite. The CCD camera is fixed to the theodolite platform to calculate the gesture shaking quantity of theodolite platform in geodetic coordinate system through the real time imaging of static datum. The observation results of theodolite are corrected by using such shaking quantity. The experiment shows that the correction accuracy exceeds 10 s of arc. The intrinsic parameter calibration technology of camera based on stellar angular distance and absolute conic put forward in this paper can prevent the estimated error of extrinsic parameters influencing the intrinsic parameter calibration and improve the intrinsic parameter calibration accuracy; the static datum conversion technology can reduce the influence of installation error of camera and theodolite platform on gesture measuring of the platform. The simulation experiment shows that when the shaking range of the platform is less than 30 min of arc, the influence of the three-axis installation error of camera within 3deg on the accuracy of correction results is less than 8 s of arc. The method in this paper can be extended to and used in the field of gesture shaking measuring and micro-structure deformation of various unstable platforms, therefore it is of important theoretical research significance and has wide engineering application prospect.展开更多
Vibration signal is an important prerequisite for mechanical fault detection. However, early stage defect of rotating machiner- ies is difficult to identify because their incipient energy is interfered with background...Vibration signal is an important prerequisite for mechanical fault detection. However, early stage defect of rotating machiner- ies is difficult to identify because their incipient energy is interfered with background noises. Multiwavelet is a powerful tool used to conduct non-stationary fault feature extraction. However, the existing predetermined multiwavelet bases are independ- ent of the dynamic response signals. In this paper, a constructing technique of vibration data-driven maximal-overlap adaptive multiwavelet (MOAMW) is proposed for enhancing the extracting performance of fault symptom. It is able to derive an opti- mal multiwavelet basis that best matches the critical non-stationary and transient fault signatures via genetic algorithm. In this technique, two-scale similarity transform (TST) and symmetric lifting (SymLift) scheme are combined to gain high designing freedom for matching the critical faulty vibration contents in vibration signals based on the maximal fitness objective. TST and SymLift can add modifications to the initial multiwavelet by changing the approximation order and vanishing moment of mul- tiwavelet, respectively. Moreover, the beneficial feature of the MOAWM lies in that the maximal-overlap filterbank structure can enhance the periodic and transient characteristics of the sensor signals and preserve the time and frequency analyzing res- olution during the decomposition process. The effectiveness of the proposed technique is validated via a numerical simulation as well as a rolling element beating with an outer race scrape and a gearbox with rub fault.展开更多
文摘A disc-type magneto-rheological fluid damper operating in shear mode is proposed in this paper,which is based on the special characteristics of the magneto-rheological (MR) fluid with rapid, reversible and dramatic change in its rheological properties by the application of an external magnetic field. The magneticfield of the disc-type MR fluid damper is analysed by the finite element method ; the controllability of the disctype MR fluid damper on the dynamic behaviour of a rotor system ; and the effectiveness of the disc-type MR fluid damper in controlling the vibration of a rotor system, are studied in a flexible rotor system with an over-hung disc. It is shown that the magnetic flux density of the disc-type MR fluid damper in the working areas can significantly change with the applied current in the coil ; and that the dynamic behavior of the disc-type MR fluid damper can be varied by the application of an external magnetic field produced by a low voltage electromagnetic coil. The disc-type MR fluid damper can significantly change the dynamic characteristics of a rotor system, provided that the location of the disk-type MR fluid damper is carefully chosen. The disc-type MR fluid damper is a new actuator with good dynamic characteristics for rotating machinery.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50875056)
文摘To overcome the limitations of traditional monitoring methods, based on vibration parameter image of rotating machinery, this paper presents an abnormality online monitoring method suitable for rotating machinery using the negative selection mechanism of biology immune system. This method uses techniques of biology clone and learning mechanism to improve the negative selection algorithm to generate detectors possessing different monitoring radius, covers the abnormality space effectively, and avoids such problems as the low efficiency of generating detectors, etc. The result of an example applying the presented monitoring method shows that this method can solve the difficulty of obtaining fault samples preferably and extract the turbine state character effectively, it also can detect abnormality by causing various fault of the turbine and obtain the degree of abnormality accurately. The exact monitoring precision of abnormality indicates that this method is feasible and has better on-line quality, accuracy and robustness.
基金Project(51205415)supported by the National Natural Science Foundation of ChinaProject(14JJ3020)supported by the Natural Science Foundation of Hunan Province,China+2 种基金Project(2013M542129)supported by China Postdoctoral Science FoundationProject(2012QNZT014)supported by the Fundamental Research Funds for the Central Universities,ChinaProject supported by the Postdoctoral Foundation of Central South University,China
文摘Due to the coaxial connection of engine, motor and pump, the dynamic characteristics of hybrid construction machinery are changed, which generates a new torsional vibration problem of multi-power sources. To reduce the torsional vibration of the hybrid construction machinery complex shafting, torsional vibration active control was proposed. The three-mass model of coaxial shafting of hybrid construction machinery was established. The PID control and the fuzzy sliding mode control were chosen to weaken torsional vibration by controlling the motor speed and torque. The simulation results show that the fuzzy sliding mode control has 12% overshoot of the PID control when the engine torque changes. The active control is effective and can realize smooth power switch.
基金The financial support from the National Natural Science Foundation of China (Nos. 51221462 and 51134022)the Doctoral Programs Foundation of Ministry of Education of China (No. 20120095110001)
文摘During screening operation, blinding or clogging of screen perforations generally occurs to reduce the sieving capacity and efficiency. Recently, the flip-flow screening has been widely recognized as a feasible method to deal with the problem. In this paper, a novel centralized-driving flip-flow screen(CFS) was developed for the separation of fine and moist coal, and the key structures, namely, a centralized-driving mechanism and a quasi-circle beam mounted with the mat were designed for high reliability and stability. By means of a test on an experimental prototype, the effect of some factors, i.e., initial stretch and hardness of the polyurethane panel, respectively, and the rotation speed of the driving motor on the kinematic characteristic of the screen surface was investigated. Results show that without an initial stretch, the sieve mat generates the largest vibratory amplitude while the slacker the sieve mat initially is, the smaller amplitude it will accomplish. And an increase in the rotation speed could cause a rise in the vibratory amplitude. Unlike the two factors, the hardness does not have a definite effect on the kinematic performance, on which a further study is required. Finally, screening processing on a laboratory prototype was conducted to draw the conclusion that the developed CFS also has a high sieving efficiency for the fine and moist coal.
文摘A method of producing rotating radial electromagnetic force with a separable structure is proposed, and an experimental model was designed on which open loop vibration control experiments were carried out. Experimental results prove that the electromagnetic force designed has a constant magnitude and an uniform speed, and the idea of using an electromagnetic force as an active control in automatic balancing is correct in principle, and practicable in engineering.
文摘The layout features of unit shafting and their effects on vibration, as well as evaluation criteria, were introduced for a 1000-MW ultra-supercritical turbine-generator unit with Simens technology. Based on vibration diagnosis and treatment for more than 10 units, some typical vibration faults were summarized, such as the vibration fluctuation of the high pressure (HP) rotor, abnormal vibration increases of the No.3 bearing pedestal and large vibration of the exciter rotor during its critical speed range. The vibration characteristics and the causes of faults and countermeasures were analyzed. Three applications for further illustration were given. The vibration fault identification method, control measures, and applications can provide a reference for vibration diagnoses and treatment of same type units.
文摘In this study, it shows how the main indicators of torsional vibrations of the crankshaft change when its materials change. In the study, the crankshaft of diesel engine with four cylinders in line was taken, in which the material is changing from steel to cast iron, due to the technological possibilities of production. For study of torsional vibration of crankshaft system, the construction of equivalent reduced scheme is carried. Reduced inertia moments of discs are determined for each crank of crankshaft, by receiving the impact of piston group and rod mass. Reduced rigidities of crank are determined by experimental method. The results show that the rigidity of crank for the same crankshaft varies up to 6%, while the change between crankshafts goes up 10%. At the end, frequency and vibration forms are calculated using Tole-Holxer method. From calculations, it results that the frequencies are 19% smaller, while the vibration forms varies slightly. In this case, the change of the materials leads to the first frequency in the area of engine rotations and it can worsen the level of torsional vibration, therefore, it should check the resonance areas and vibration amplitude.
文摘An algorithm for computing the 3-D oscillating flow field of the blade passage under the torsional vibra-tion of the rotor is applied to analyze the stability in turbomachines. The induced fiow field responding to blade vibration is computed by Oscillating Fluid Mechanics Method and ParaInetric Polynomial Method. After getting the solution of the unsteady flow field, the work done by the unsteay aerody natnic force acting on the blade can be obtained. The negative or positive work is the criterion of the aeroelastic stability Numerical results indicate that there are instabilities of the torsional vibration in some boency bands.
基金supported financially by the National Natural Science Foundation of China(Grant Nos.51275382 and 11176024)the Specialized Research Fund for the Doctoral Program of Higher Education(Grant No.20110201130001)
文摘The rotating machinery,as a typical example of large and complex mechanical systems,is prone to diversified sorts of mechanical faults,especially on their rotating components.Although they can be collected via vibration measurements,the critical fault signatures are always masked by overwhelming interfering contents,therefore difficult to be identified.Moreover,owing to the distinguished time-frequency characteristics of the machinery fault signatures,classical dyadic wavelet transforms(DWTs) are not perfect for detecting them in noisy environments.In order to address the deficiencies of DWTs,a pseudo wavelet system(PWS) is proposed based on the filter constructing strategies of wavelet tight frames.The presented PWS is implemented via a specially devised shift-invariant filterbank structure,which generates non-dyadic wavelet subbands as well as dyadic ones.The PWS offers a finer partition of the vibration signal into the frequency-scale plane.In addition,in order to correctly identify the essential transient signatures produced by the faulty mechanical components,a new signal impulsiveness measure,named spatial spectral ensemble kurtosis(SSEK),is put forward.SSEK is used for selecting the optimal analyzing parameters among the decomposed wavelet subbands so that the masked critical fault signatures can be explicitly recognized.The proposed method has been applied to engineering fault diagnosis cases,in which the processing results showed its effectiveness and superiority to some existing methods.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11072263 and 11272347)Program for New Century Talents in University
文摘During the non-landing measuring of vehicle mounted theodolite, especially under high-speed tracking measurement, the misalignment of theodolite's center of mass and spindle etc. will cause high-frequency vibration of theodolite platform, increase the observation error of targets and even unbelievable results. In this paper, a correction method of non-landing measuring of theodolite based on static datum conversion is presented, which can effectively improve the observation accuracy of theodolite. The CCD camera is fixed to the theodolite platform to calculate the gesture shaking quantity of theodolite platform in geodetic coordinate system through the real time imaging of static datum. The observation results of theodolite are corrected by using such shaking quantity. The experiment shows that the correction accuracy exceeds 10 s of arc. The intrinsic parameter calibration technology of camera based on stellar angular distance and absolute conic put forward in this paper can prevent the estimated error of extrinsic parameters influencing the intrinsic parameter calibration and improve the intrinsic parameter calibration accuracy; the static datum conversion technology can reduce the influence of installation error of camera and theodolite platform on gesture measuring of the platform. The simulation experiment shows that when the shaking range of the platform is less than 30 min of arc, the influence of the three-axis installation error of camera within 3deg on the accuracy of correction results is less than 8 s of arc. The method in this paper can be extended to and used in the field of gesture shaking measuring and micro-structure deformation of various unstable platforms, therefore it is of important theoretical research significance and has wide engineering application prospect.
基金supported by the National Natural Science Foundation of China(Grant No.51275384)the Key Project of National Natural Science Foundation of China(Grant No.51035007)+1 种基金the National Basic Research Program of China(Grant No.2009CB724405)the Specialized Research Fund for the Doctoral Program of Higher Education(Grant No.20110201130001)
文摘Vibration signal is an important prerequisite for mechanical fault detection. However, early stage defect of rotating machiner- ies is difficult to identify because their incipient energy is interfered with background noises. Multiwavelet is a powerful tool used to conduct non-stationary fault feature extraction. However, the existing predetermined multiwavelet bases are independ- ent of the dynamic response signals. In this paper, a constructing technique of vibration data-driven maximal-overlap adaptive multiwavelet (MOAMW) is proposed for enhancing the extracting performance of fault symptom. It is able to derive an opti- mal multiwavelet basis that best matches the critical non-stationary and transient fault signatures via genetic algorithm. In this technique, two-scale similarity transform (TST) and symmetric lifting (SymLift) scheme are combined to gain high designing freedom for matching the critical faulty vibration contents in vibration signals based on the maximal fitness objective. TST and SymLift can add modifications to the initial multiwavelet by changing the approximation order and vanishing moment of mul- tiwavelet, respectively. Moreover, the beneficial feature of the MOAWM lies in that the maximal-overlap filterbank structure can enhance the periodic and transient characteristics of the sensor signals and preserve the time and frequency analyzing res- olution during the decomposition process. The effectiveness of the proposed technique is validated via a numerical simulation as well as a rolling element beating with an outer race scrape and a gearbox with rub fault.