Recent and constant demands for greater power densities and smaller sizes of electronic systems have stimulated the growth of new designs of different passive heat transfer methods such as heat pipes. Particularly, OH...Recent and constant demands for greater power densities and smaller sizes of electronic systems have stimulated the growth of new designs of different passive heat transfer methods such as heat pipes. Particularly, OHPs (Oscillating Heat Pipes) are relatively novel devices, capable of removing high heat rates over long and short distances with not much temperature drop. This study concentrates on the design, building and assembling a test rig in order to analyse the flow pattern ofdeionised water through a 5 turns flat plate oscillating heat pipe under different heat inputs, which was made in the school of engineering and materials science of the Queen Mary University of London by two energy M.Sc. students. The filling ratio of the water is 40%. Furthermore an experimental study on the OHP thermal performance is carried out in order to examine the effects of different surface wet conditions: super hydrophilic, hydrophilic and cleaned brass. It is demonstrated the formation of liquid slugs and vapour plugs of the water along the channels. The experimental results showed that the hydrophilic surface tends to be more energy efficient. The heat transfer performance of the super-hydrophilic and hydrophilic is higher than brass by 5-12% and 15-20% respectively.展开更多
The counter-rotating type hydroelectric unit, which is composed of the axial flow type tandem runners and the peculiar generator with double rotational armatures, has been proposed. In the unit, the front and the rear...The counter-rotating type hydroelectric unit, which is composed of the axial flow type tandem runners and the peculiar generator with double rotational armatures, has been proposed. In the unit, the front and the rear runners counter-drive the inner and the outer armatures of the generator, respectively. Besides, the flow direction at the rear runner outlet must coincide with the direction at the front runner inlet, because the angular momentum change through the rear runner must coincides with that through the front runner. In this paper, the tandem runners work at on-cam conditions in keeping the induced frequency constant, to provide the hydroelectric unit for the power grid system. The output and the hydraulic efficiency are affected by the adjusting angles of the front and the rear blades. Both optimum angles giving the maximum output or efficiency were presented at the various discharge/head circumstances, accompanying with the turbine performances.展开更多
文摘Recent and constant demands for greater power densities and smaller sizes of electronic systems have stimulated the growth of new designs of different passive heat transfer methods such as heat pipes. Particularly, OHPs (Oscillating Heat Pipes) are relatively novel devices, capable of removing high heat rates over long and short distances with not much temperature drop. This study concentrates on the design, building and assembling a test rig in order to analyse the flow pattern ofdeionised water through a 5 turns flat plate oscillating heat pipe under different heat inputs, which was made in the school of engineering and materials science of the Queen Mary University of London by two energy M.Sc. students. The filling ratio of the water is 40%. Furthermore an experimental study on the OHP thermal performance is carried out in order to examine the effects of different surface wet conditions: super hydrophilic, hydrophilic and cleaned brass. It is demonstrated the formation of liquid slugs and vapour plugs of the water along the channels. The experimental results showed that the hydrophilic surface tends to be more energy efficient. The heat transfer performance of the super-hydrophilic and hydrophilic is higher than brass by 5-12% and 15-20% respectively.
文摘The counter-rotating type hydroelectric unit, which is composed of the axial flow type tandem runners and the peculiar generator with double rotational armatures, has been proposed. In the unit, the front and the rear runners counter-drive the inner and the outer armatures of the generator, respectively. Besides, the flow direction at the rear runner outlet must coincide with the direction at the front runner inlet, because the angular momentum change through the rear runner must coincides with that through the front runner. In this paper, the tandem runners work at on-cam conditions in keeping the induced frequency constant, to provide the hydroelectric unit for the power grid system. The output and the hydraulic efficiency are affected by the adjusting angles of the front and the rear blades. Both optimum angles giving the maximum output or efficiency were presented at the various discharge/head circumstances, accompanying with the turbine performances.