提出了一种基于最大转矩损耗功率比(Maximum Torque Per Power Losses,MTPPL)的感应电动机变频调速系统的能效优化方法。在考虑铁损耗的感应电动机数学模型以及转子磁场定向的基础上,分析了电动机处于稳态运行时,电动机转矩损耗功率比...提出了一种基于最大转矩损耗功率比(Maximum Torque Per Power Losses,MTPPL)的感应电动机变频调速系统的能效优化方法。在考虑铁损耗的感应电动机数学模型以及转子磁场定向的基础上,分析了电动机处于稳态运行时,电动机转矩损耗功率比与电动机转速、转差频率之间的关系。当转矩损耗功率比取最大值时,即实现电动机控制系统损耗功率最小化的高能效运行。推导出转矩损耗功率比与电动机转速和转差的函数关系式,并对其求导,求出最大值对应的最优转差频率。将最优转差频率用于感应电动机的恒压频比变频调速系统,实现感应电动机的高能效运行。在Matlab/Simulink中搭建控制系统的仿真模型以及实验平台,验证了该方法的有效性。展开更多
Many papers exploiting the various MPPT (maximum power point tracking) techniques in PV (photovoltaic) applications, from the simple to the most complicated, can be found in literature. However, these techniques m...Many papers exploiting the various MPPT (maximum power point tracking) techniques in PV (photovoltaic) applications, from the simple to the most complicated, can be found in literature. However, these techniques may not always be easy to implement in industrial applications. The main challenge of this paper is to model and implement the P & O (perturb and observe) algorithm in a low-cost PV-powered pumping system. To that end, a comparative investigation of the performance characteristics of the most popular MPPT methods, such as FOCV (fractional open circuit voltage), FSCC (fractional short circuit current), FLC (fuzzy logic control), ANN (artificial neural network) and INC (incremental conductance) is presented. This analysis is helpful to highlight the relevance of the P & O technique taking better account of complexity, difficulty of implementation and cost considerations in water pumping applications. The targeted PV-powered pumping system is based on a single-phase induction motor supplied by a three-phase inverter controlled by the DTC (direct torque control) technique. This stand-alone PV system is dedicated to water pumping, especially in rural areas that have no access to national grids but have sufficient amount of solar radiation. Simulation modeling (Matlab/Simulink) and experimental results are presented to demonstrate the relevance of the system.展开更多
文摘提出了一种基于最大转矩损耗功率比(Maximum Torque Per Power Losses,MTPPL)的感应电动机变频调速系统的能效优化方法。在考虑铁损耗的感应电动机数学模型以及转子磁场定向的基础上,分析了电动机处于稳态运行时,电动机转矩损耗功率比与电动机转速、转差频率之间的关系。当转矩损耗功率比取最大值时,即实现电动机控制系统损耗功率最小化的高能效运行。推导出转矩损耗功率比与电动机转速和转差的函数关系式,并对其求导,求出最大值对应的最优转差频率。将最优转差频率用于感应电动机的恒压频比变频调速系统,实现感应电动机的高能效运行。在Matlab/Simulink中搭建控制系统的仿真模型以及实验平台,验证了该方法的有效性。
文摘Many papers exploiting the various MPPT (maximum power point tracking) techniques in PV (photovoltaic) applications, from the simple to the most complicated, can be found in literature. However, these techniques may not always be easy to implement in industrial applications. The main challenge of this paper is to model and implement the P & O (perturb and observe) algorithm in a low-cost PV-powered pumping system. To that end, a comparative investigation of the performance characteristics of the most popular MPPT methods, such as FOCV (fractional open circuit voltage), FSCC (fractional short circuit current), FLC (fuzzy logic control), ANN (artificial neural network) and INC (incremental conductance) is presented. This analysis is helpful to highlight the relevance of the P & O technique taking better account of complexity, difficulty of implementation and cost considerations in water pumping applications. The targeted PV-powered pumping system is based on a single-phase induction motor supplied by a three-phase inverter controlled by the DTC (direct torque control) technique. This stand-alone PV system is dedicated to water pumping, especially in rural areas that have no access to national grids but have sufficient amount of solar radiation. Simulation modeling (Matlab/Simulink) and experimental results are presented to demonstrate the relevance of the system.