This paper presents a new theoretical model to determine the optimal axial preload of a spindle system, for challenging the traditional method which relies heavily on experience of engineers. The axial preloading stif...This paper presents a new theoretical model to determine the optimal axial preload of a spindle system, for challenging the traditional method which relies heavily on experience of engineers. The axial preloading stiffness was treated as the sum of the spindle modal stiffness and the framework elastic stiffness, based on a novel concept that magnitude of preloads can be controlled by measuring the resonant frequency of a spindle system. By employing an example of a certain type of aircraft simulating rotary table, the modal stiffness was measured on the Agilent 35670A Dynamic Signal Analyzer by experimental modal analysis. The equivalent elastic stiffness was simulated by both finite element analysis in ANSYS? and a curve fitting in MATLAB?. Results showed that the static preloading stiffness of the spindle was 7.2125×107 N/m, and that the optimal preloading force was 120.0848 N. Practical application proved the feasibility of our method.展开更多
A unity transformation model (UTM) was presented for flexible NC machining of spiral bevel gears and hypoid gears. The model can support various machining methods for Gleason spiral bevel gears and hypoid gears, inclu...A unity transformation model (UTM) was presented for flexible NC machining of spiral bevel gears and hypoid gears. The model can support various machining methods for Gleason spiral bevel gears and hypoid gears, including generation machining and formation machining for wheel or pinion on a universal five-axis machining center, and then directly produce NC codes for the selected machining method. Wheel machining and pinion machining under UTM were simulated in Vericut 6.0 and tested on a five-axis machining center TDNC-W2000 with NC unit TDNC-H8. The results from simulation and real-cut verify the feasibility of gear machining under UTM as well as the correctness of NC codes.展开更多
For the purpose of analyzing the torsional vibration caused by the gravitational unbalance torque arisen in a spindle system when it is machining heavy work piece,a 10-DOF lumped parameter model was made for the machi...For the purpose of analyzing the torsional vibration caused by the gravitational unbalance torque arisen in a spindle system when it is machining heavy work piece,a 10-DOF lumped parameter model was made for the machine tool spindle system with geared transmission.By using the elementary method and Runge-Kutta method in Matlab,the eigenvalue problem was solved and the pure torsional vibration responses were obtained and examined.The results show that the spindle system cannot operate in the desired constant rotating speed as far as the gravitational unbalance torque is engaged,so it may cause bad effect on machining accuracy.And the torsional vibration increases infinitely near the resonant frequencies,so the spindle system cannot operate normally during these spindle speed ranges.展开更多
文摘This paper presents a new theoretical model to determine the optimal axial preload of a spindle system, for challenging the traditional method which relies heavily on experience of engineers. The axial preloading stiffness was treated as the sum of the spindle modal stiffness and the framework elastic stiffness, based on a novel concept that magnitude of preloads can be controlled by measuring the resonant frequency of a spindle system. By employing an example of a certain type of aircraft simulating rotary table, the modal stiffness was measured on the Agilent 35670A Dynamic Signal Analyzer by experimental modal analysis. The equivalent elastic stiffness was simulated by both finite element analysis in ANSYS? and a curve fitting in MATLAB?. Results showed that the static preloading stiffness of the spindle was 7.2125×107 N/m, and that the optimal preloading force was 120.0848 N. Practical application proved the feasibility of our method.
基金Supported by National High Technology Research and Development Program ("863" Program, No. 2007AA042005)
文摘A unity transformation model (UTM) was presented for flexible NC machining of spiral bevel gears and hypoid gears. The model can support various machining methods for Gleason spiral bevel gears and hypoid gears, including generation machining and formation machining for wheel or pinion on a universal five-axis machining center, and then directly produce NC codes for the selected machining method. Wheel machining and pinion machining under UTM were simulated in Vericut 6.0 and tested on a five-axis machining center TDNC-W2000 with NC unit TDNC-H8. The results from simulation and real-cut verify the feasibility of gear machining under UTM as well as the correctness of NC codes.
基金Project(10033135-2009-11) supported by the Korean Ministry of Knowledge Economy (MKE) through HNK. Co,Ltd.
文摘For the purpose of analyzing the torsional vibration caused by the gravitational unbalance torque arisen in a spindle system when it is machining heavy work piece,a 10-DOF lumped parameter model was made for the machine tool spindle system with geared transmission.By using the elementary method and Runge-Kutta method in Matlab,the eigenvalue problem was solved and the pure torsional vibration responses were obtained and examined.The results show that the spindle system cannot operate in the desired constant rotating speed as far as the gravitational unbalance torque is engaged,so it may cause bad effect on machining accuracy.And the torsional vibration increases infinitely near the resonant frequencies,so the spindle system cannot operate normally during these spindle speed ranges.