An integrated and reliable phase unwrapping algorithm is proposed based on residues and blocking-lines detection, closed contour extraction and quality map ordering for the measurement of 3D shapes by Fourier-transfor...An integrated and reliable phase unwrapping algorithm is proposed based on residues and blocking-lines detection, closed contour extraction and quality map ordering for the measurement of 3D shapes by Fourier-transform profilometry (FTP). The proposed algorithm first detects the residues on the wrapped phase image, applies wavelet analysis to generate the blocking-lines that can just connect the residues of opposite polarity, then carries out the morphology operation to extract the closed contour of the shape, and finally uses the modulation intensity information and the Laplacian of Gaussian operation of the wrapped phase image as the quality map. The unwrapping process is completed from a region of high reliability to that of low reliability and the blocking-lines can prevent the phase error propagation effectively. Furthermore, by using the extracted closed contour to exclude the invalid areas from the phase unwrapping process, the algorithm becomes more efficient. The experiment shows the effec-tiveness of the new algorithm.展开更多
基金Project (Nos. 2007AA04Z1A5 and 2007AA01Z311) supported by the Hi-Tech Research and Development Program (863) of China
文摘An integrated and reliable phase unwrapping algorithm is proposed based on residues and blocking-lines detection, closed contour extraction and quality map ordering for the measurement of 3D shapes by Fourier-transform profilometry (FTP). The proposed algorithm first detects the residues on the wrapped phase image, applies wavelet analysis to generate the blocking-lines that can just connect the residues of opposite polarity, then carries out the morphology operation to extract the closed contour of the shape, and finally uses the modulation intensity information and the Laplacian of Gaussian operation of the wrapped phase image as the quality map. The unwrapping process is completed from a region of high reliability to that of low reliability and the blocking-lines can prevent the phase error propagation effectively. Furthermore, by using the extracted closed contour to exclude the invalid areas from the phase unwrapping process, the algorithm becomes more efficient. The experiment shows the effec-tiveness of the new algorithm.