期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
钢轨扣件横向偏移特征检测算法研究
1
作者 王恩鸿 柴晓冬 +2 位作者 钟倩文 李立明 张乔木 《城市轨道交通研究》 北大核心 2021年第5期142-147,共6页
针对无砟轨道中钢轨扣件发生横向松动、脱离正常工作位置产生偏移的问题,提出一种钢轨扣件横向偏移检测法。首先,该算法为解决传统的扣件图像定位不够精准问题,采用k-means聚类和类二值算法强化分割前景、背景与轮廓矩特征,实现对采集... 针对无砟轨道中钢轨扣件发生横向松动、脱离正常工作位置产生偏移的问题,提出一种钢轨扣件横向偏移检测法。首先,该算法为解决传统的扣件图像定位不够精准问题,采用k-means聚类和类二值算法强化分割前景、背景与轮廓矩特征,实现对采集图像中扣件位置的精准定位;其次,不同于传统扣件特征提取采用复杂语义,提出一种基于机器视觉的轮廓分析方法,通过提取扣件的绝缘帽与螺母的轮廓特征,计算相邻绝缘帽间距和相邻螺母间距,并与安全状态下扣件轮廓特征计算得到的安全距离阈值进行对比,进一步计算偏移量,从而判断扣件是否发生横向松动。结果表明:该算法计算速度快,能够准确地定位弹条位置和偏移量,与传统的识别算法得到扣件的偏移量数据相比准确率显著提高,可达98%。 展开更多
关键词 钢轨扣件 机器视觉 特征提取 轮廓特征矩 偏移检测
下载PDF
基于NAO机器人的目标识别方法 被引量:5
2
作者 梁付新 刘洪彬 +1 位作者 张福雷 常发亮 《计算机工程与设计》 北大核心 2017年第8期2235-2239,共5页
针对NAO机器人识别目标准确率过低的问题,为降低光照对识别的影响,提出一种基于HSV颜色空间的轮廓信息特征识别的算法,通过融合颜色特征和轮廓特征识别图像中的目标。利用HSV空间模型,通过颜色阈值分割对图像进行预处理,提取红绿色目标... 针对NAO机器人识别目标准确率过低的问题,为降低光照对识别的影响,提出一种基于HSV颜色空间的轮廓信息特征识别的算法,通过融合颜色特征和轮廓特征识别图像中的目标。利用HSV空间模型,通过颜色阈值分割对图像进行预处理,提取红绿色目标;根据目标规则的多边形轮廓,对其形状信息加以约束;利用二值图像的轮廓特征矩加以判决,得到识别目标及其在图像中的中心坐标,实现目标的精确识别。利用NAO机器人采集图像进行模拟实验,改变NAO与目标的相对位置并多次测量,成功定位的准确率可达到92.67%。实验结果表明,NAO机器人采用该算法可以快速稳定地实现目标识别,提高了准确率。 展开更多
关键词 NAO机器人 目标识别 颜色识别 轮廓特征矩 图像预处理
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部