A recently developed computerized method for assessing the rock joint coefficients is discussed. The performances of formerly introduced relative similarity indicators, along with the correlation coefficient, are subj...A recently developed computerized method for assessing the rock joint coefficients is discussed. The performances of formerly introduced relative similarity indicators, along with the correlation coefficient, are subjected to critical analysis. These relative numerical indicators are replaced by two absolute indicators whose properties better describe surface textures of rock joints. The first absolute indicator results from the Fourier Matrix and evaluates wavy shapes of surfaces. The second absolute indicator quantifies the heights of surface reliefs, and is defined as the root mean square height of the surface outline. The behavior of the newly introduced numerical indicators are investigated by means of the deterministic periodic surface reliefs. The practical application of the new indicators is presented and the convenient performances of both the indicators are documented.展开更多
Twist drill flute profile design is necessary in order to determine the required grinding wheel profile for a flute production. An accurate drill flute profile design is generated for two-flute conical twist drills us...Twist drill flute profile design is necessary in order to determine the required grinding wheel profile for a flute production. An accurate drill flute profile design is generated for two-flute conical twist drills using analytical equations to generate a drill flute profile design needed for the production of twist drills with straight lips. The required grinding wheel profile for a flute production was expressed in digitized form as well as in terms of two curve-fitted circular arcs. The drill flute profile geometry can never be precisely generated when required grinding wheel profile is represented by two circular arcs and the generated flute profile is just a very good approximation of the design flute profile. A CAD (computer aided design) software has been developed using MATLAB to determine the required grinding wheel profile for generating a given drill flute profile design.展开更多
基金supported by the Grant Agency of the Czech Republic (No. 13-03403S)
文摘A recently developed computerized method for assessing the rock joint coefficients is discussed. The performances of formerly introduced relative similarity indicators, along with the correlation coefficient, are subjected to critical analysis. These relative numerical indicators are replaced by two absolute indicators whose properties better describe surface textures of rock joints. The first absolute indicator results from the Fourier Matrix and evaluates wavy shapes of surfaces. The second absolute indicator quantifies the heights of surface reliefs, and is defined as the root mean square height of the surface outline. The behavior of the newly introduced numerical indicators are investigated by means of the deterministic periodic surface reliefs. The practical application of the new indicators is presented and the convenient performances of both the indicators are documented.
文摘Twist drill flute profile design is necessary in order to determine the required grinding wheel profile for a flute production. An accurate drill flute profile design is generated for two-flute conical twist drills using analytical equations to generate a drill flute profile design needed for the production of twist drills with straight lips. The required grinding wheel profile for a flute production was expressed in digitized form as well as in terms of two curve-fitted circular arcs. The drill flute profile geometry can never be precisely generated when required grinding wheel profile is represented by two circular arcs and the generated flute profile is just a very good approximation of the design flute profile. A CAD (computer aided design) software has been developed using MATLAB to determine the required grinding wheel profile for generating a given drill flute profile design.