A simulation method is proposed to predict the motion artifacts of plasma display panels (PDPs). The method simulates the behavior of the human vision system when perceiving moving objects. The simulation is based o...A simulation method is proposed to predict the motion artifacts of plasma display panels (PDPs). The method simulates the behavior of the human vision system when perceiving moving objects. The simulation is based on the measured temporal light properties of the display for each gray level and each phosphor. Both the effect of subfield arrangement and phosphor decay are involved. A novel algorithm is proposed to improve the calculation speed. The simulation model manages to predict the appearance of the motion image perceived by a human with a still image. The results are validated by a set of perceptual evaluation experiments. This rapid and accurate prediction of motion artifacts enables objective characterization of the PDP performance in this aspect.展开更多
The design solutions for breadth cam mechanism was presented. The main topics of the shape design for breadth cam was to calculate the coordinate at each contact point to determine the cam profile. The proposed method...The design solutions for breadth cam mechanism was presented. The main topics of the shape design for breadth cam was to calculate the coordinate at each contact point to determine the cam profile. The proposed method according to velocity and geometric relationships of instant velocity centers can easily determine each contact point at any instant moment. The cam profile was defined by contouring of the contact points. And also a program was developed by using Microsoft Visual C++ program,which can quickly and easily draw a 2D cam profile through the displacement diagram. Finally,the program was used to confirm the accuracy on the breadth cam profile design by computer animation graphically.展开更多
A layered modeling method is proposed to resolve the problems resulting from the complexity of the error model of a multi-axis motion control system. In this model, a low level layer can be used as a virtual axis by t...A layered modeling method is proposed to resolve the problems resulting from the complexity of the error model of a multi-axis motion control system. In this model, a low level layer can be used as a virtual axis by the high level layer. The first advantage of this model is that the complex error model of a four-axis motion control system can be divided into several simple layers and each layer has different coupling strength to match the real control system. The second advantage lies in the fact that the controller in each layer can be designed specifically for a certain purpose. In this research, a three-layered cross coupling scheme in a four-axis motion control system is proposed to compensate the contouring error of the motion control system. Simulation results show that the maximum contouring error is reduced from 0.208 mm to 0.022 mm and the integration of absolute error is reduced from 0.108 mm to 0.015 mm, which are respectively better than 0.027 mm and 0.037 mm by the traditional method. And in the bottom layer the proposed method also has remarkable ability to achieve high contouring accuracy.展开更多
The cross-coupled control(CCC)is widely applied to reduce contour errors in contour-following applications.In such situation,the contour error estimation plays an important role.Traditionally,the linear or second-orde...The cross-coupled control(CCC)is widely applied to reduce contour errors in contour-following applications.In such situation,the contour error estimation plays an important role.Traditionally,the linear or second-order estimation approach is adopted for biaxial motion systems,whereas only linear approach is available for triaxial systems.In this paper,the second-order contour error estimation,which was presented in our previous work,is utilized to determine the variable CCC gains for motion control systems with three axes.An integrated stable motion control strategy,which combines the feedforward,feedback and CCC controllers,is developed for multiaxis CNC systems.Experimental results on a triaxial platform indicate that the CCC scheme based on the second-order estimation,compared with that based on the linear one,significantly reduces the contour error even in the conditions of high tracking feedrate and small radius of curvature.展开更多
文摘A simulation method is proposed to predict the motion artifacts of plasma display panels (PDPs). The method simulates the behavior of the human vision system when perceiving moving objects. The simulation is based on the measured temporal light properties of the display for each gray level and each phosphor. Both the effect of subfield arrangement and phosphor decay are involved. A novel algorithm is proposed to improve the calculation speed. The simulation model manages to predict the appearance of the motion image perceived by a human with a still image. The results are validated by a set of perceptual evaluation experiments. This rapid and accurate prediction of motion artifacts enables objective characterization of the PDP performance in this aspect.
基金Work supported by the Second Stage of Brain Korea 21 Projects
文摘The design solutions for breadth cam mechanism was presented. The main topics of the shape design for breadth cam was to calculate the coordinate at each contact point to determine the cam profile. The proposed method according to velocity and geometric relationships of instant velocity centers can easily determine each contact point at any instant moment. The cam profile was defined by contouring of the contact points. And also a program was developed by using Microsoft Visual C++ program,which can quickly and easily draw a 2D cam profile through the displacement diagram. Finally,the program was used to confirm the accuracy on the breadth cam profile design by computer animation graphically.
基金Project(51005086)supported by the National Natural Science Foundation of ChinaProject(2010MS085)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(DMETKF2013008)supported by the Open Project of the State Key Laboratory of Digital Manufacturing Equipment and Technology,China
文摘A layered modeling method is proposed to resolve the problems resulting from the complexity of the error model of a multi-axis motion control system. In this model, a low level layer can be used as a virtual axis by the high level layer. The first advantage of this model is that the complex error model of a four-axis motion control system can be divided into several simple layers and each layer has different coupling strength to match the real control system. The second advantage lies in the fact that the controller in each layer can be designed specifically for a certain purpose. In this research, a three-layered cross coupling scheme in a four-axis motion control system is proposed to compensate the contouring error of the motion control system. Simulation results show that the maximum contouring error is reduced from 0.208 mm to 0.022 mm and the integration of absolute error is reduced from 0.108 mm to 0.015 mm, which are respectively better than 0.027 mm and 0.037 mm by the traditional method. And in the bottom layer the proposed method also has remarkable ability to achieve high contouring accuracy.
基金supported by the National Natural Science Foundation of China(Grant Nos.51325502 and 51405175)the National Basic Research Program of China("973"Project)(Grant No.2011CB706804)the National Science and Technology Major Projects of China(Grant No.2012ZX04001-012-01-05)
文摘The cross-coupled control(CCC)is widely applied to reduce contour errors in contour-following applications.In such situation,the contour error estimation plays an important role.Traditionally,the linear or second-order estimation approach is adopted for biaxial motion systems,whereas only linear approach is available for triaxial systems.In this paper,the second-order contour error estimation,which was presented in our previous work,is utilized to determine the variable CCC gains for motion control systems with three axes.An integrated stable motion control strategy,which combines the feedforward,feedback and CCC controllers,is developed for multiaxis CNC systems.Experimental results on a triaxial platform indicate that the CCC scheme based on the second-order estimation,compared with that based on the linear one,significantly reduces the contour error even in the conditions of high tracking feedrate and small radius of curvature.