Chromium reduction in gas turbine engines;Combustion in a Transonic Flow with Large Axial and Transverse Pressure Gradients;Computer-aided design of gating systems for gas turbine engine rotor blades;CONCEPTUAL AND...Chromium reduction in gas turbine engines;Combustion in a Transonic Flow with Large Axial and Transverse Pressure Gradients;Computer-aided design of gating systems for gas turbine engine rotor blades;CONCEPTUAL AND STATISTICAL PROBLEMS AND APPROACHES IN GAS TURBINE ENGINE HEALTH MONITORING;Development of ceramic turbine wheel for aircraft gas turbine engine……展开更多
Based on the Joukowsky transformation and Theodorsen method, a novel parametric function (shape function) for wind turbine airfoils has been developed. The airfoil design space and shape control equations also have ...Based on the Joukowsky transformation and Theodorsen method, a novel parametric function (shape function) for wind turbine airfoils has been developed. The airfoil design space and shape control equations also have been studied. Results of the analysis of a typical wind turbine airfoil are shown to illustrate the evaluation process and to demonstrate the rate of convergence of the geometric characteristics. The coordinates and aerodynamic performance of approximate airfoils is rapidly close to the baseline airfoil corresponding to increasing orders of polynomial. Comparison of the RFOIL prediction and experimental results for the baseline airfoil generally show good agreement. A universal method for three-dimensional blade integration-" Shape function/Distribution function" is presented. By changing the parameters of shape function and distribution functions, a three dimensional blade can be designed and then transformed into the physical space in which the actual geometry is defined. Application of this method to a wind turbine blade is presented and the differences of power performance between the represented blade and original one are less than 0. 5%. This method is particularly simple and convenient for bodies of streamline forms.展开更多
This study numerically analyzes the unsteady flow around the Darrieus-type turbine by using FLUENT and deals with the application to the design of blades. Two kinds of blade sections were used in this study. Unsteady ...This study numerically analyzes the unsteady flow around the Darrieus-type turbine by using FLUENT and deals with the application to the design of blades. Two kinds of blade sections were used in this study. Unsteady RANS equation and the turbulence model, either k-e or k-co model, which are appropriate for each blade section, were employed. First for the NACA 634-021 blade that the experimental data is available, the 2-dimensional and 3-dimensional numerical analyses have been performed and compared with the experimental result. For the optimization of the turbine, the parametric study has been performed to check the performance in accordance with the changes in the number of blades, solidity and camber. It is demonstrated that the present approach could draw the turbine characteristics better in performance than the existing turbine. Next for the NACA 653-018 blade with the high lift-drag ratio from the purpose of developing highly-efficient turbine, this study has also tried to get the highly efficient turbine specifications by analyzing the performance while using 2-dimensional and 3-dimensional numerical analyses and the result was verified through the experiment. According to the present study, it is concluded that the 3-dimensional numerical analysis has simulated the experimental values relatively well and also, the 2-dimensional analysis can be a useful tool in the parametric study for the turbine design.展开更多
The engineering analysis techniques used for the GTE (gas turbine engines) design are presented, the physical effects, which impact is not currently taken into account are described, further research directions to s...The engineering analysis techniques used for the GTE (gas turbine engines) design are presented, the physical effects, which impact is not currently taken into account are described, further research directions to strengthen core design competencies are identified, the requirements for computing power are formulated. Internal cooling techniques for gas turbine blades have been studied for several decades. The internal cooling techniques of the gas turbine blade includes: jet impingement, rib turbulated cooling, and pin-fin cooling which have been developed to maintain the metal temperature of turbine vane and blades within acceptable limits in this harsh environment.展开更多
In order to establish the design methodology of an ultra micro centrifugal compressor, which is the most important component of an ultra micro gas turbine unit, a 10 times size of the final target compressor (impelle...In order to establish the design methodology of an ultra micro centrifugal compressor, which is the most important component of an ultra micro gas turbine unit, a 10 times size of the final target compressor (impeller outer diameter 40 mm, corrected rotational speed 220,000 r/min) was designed. The problems to be solved for downsizing were examined and a 2-dimensional impeller was chosen as the first model due to its productivity. The conventional 1D prediction method and CFD were used. The prototyped compressor was tested by using cold air at the reduced speed of 110,000 r/min. Following to the 10 times model, a 5 times size of the final target model having fully 3-dimensional shape (impeller outer diameter 20mm, corrected rotational speed 500,000 r/min) was designed and tested by using hot gas at the reduced speed of 250,000 r/min.展开更多
文摘Chromium reduction in gas turbine engines;Combustion in a Transonic Flow with Large Axial and Transverse Pressure Gradients;Computer-aided design of gating systems for gas turbine engine rotor blades;CONCEPTUAL AND STATISTICAL PROBLEMS AND APPROACHES IN GAS TURBINE ENGINE HEALTH MONITORING;Development of ceramic turbine wheel for aircraft gas turbine engine……
基金Supported by the National Natural Science Foundation of China ( No. 50775227 ) and the Natural Science Foundation of Chongqing ( No. CSTC, 2008BC3029).
文摘Based on the Joukowsky transformation and Theodorsen method, a novel parametric function (shape function) for wind turbine airfoils has been developed. The airfoil design space and shape control equations also have been studied. Results of the analysis of a typical wind turbine airfoil are shown to illustrate the evaluation process and to demonstrate the rate of convergence of the geometric characteristics. The coordinates and aerodynamic performance of approximate airfoils is rapidly close to the baseline airfoil corresponding to increasing orders of polynomial. Comparison of the RFOIL prediction and experimental results for the baseline airfoil generally show good agreement. A universal method for three-dimensional blade integration-" Shape function/Distribution function" is presented. By changing the parameters of shape function and distribution functions, a three dimensional blade can be designed and then transformed into the physical space in which the actual geometry is defined. Application of this method to a wind turbine blade is presented and the differences of power performance between the represented blade and original one are less than 0. 5%. This method is particularly simple and convenient for bodies of streamline forms.
文摘This study numerically analyzes the unsteady flow around the Darrieus-type turbine by using FLUENT and deals with the application to the design of blades. Two kinds of blade sections were used in this study. Unsteady RANS equation and the turbulence model, either k-e or k-co model, which are appropriate for each blade section, were employed. First for the NACA 634-021 blade that the experimental data is available, the 2-dimensional and 3-dimensional numerical analyses have been performed and compared with the experimental result. For the optimization of the turbine, the parametric study has been performed to check the performance in accordance with the changes in the number of blades, solidity and camber. It is demonstrated that the present approach could draw the turbine characteristics better in performance than the existing turbine. Next for the NACA 653-018 blade with the high lift-drag ratio from the purpose of developing highly-efficient turbine, this study has also tried to get the highly efficient turbine specifications by analyzing the performance while using 2-dimensional and 3-dimensional numerical analyses and the result was verified through the experiment. According to the present study, it is concluded that the 3-dimensional numerical analysis has simulated the experimental values relatively well and also, the 2-dimensional analysis can be a useful tool in the parametric study for the turbine design.
文摘The engineering analysis techniques used for the GTE (gas turbine engines) design are presented, the physical effects, which impact is not currently taken into account are described, further research directions to strengthen core design competencies are identified, the requirements for computing power are formulated. Internal cooling techniques for gas turbine blades have been studied for several decades. The internal cooling techniques of the gas turbine blade includes: jet impingement, rib turbulated cooling, and pin-fin cooling which have been developed to maintain the metal temperature of turbine vane and blades within acceptable limits in this harsh environment.
文摘In order to establish the design methodology of an ultra micro centrifugal compressor, which is the most important component of an ultra micro gas turbine unit, a 10 times size of the final target compressor (impeller outer diameter 40 mm, corrected rotational speed 220,000 r/min) was designed. The problems to be solved for downsizing were examined and a 2-dimensional impeller was chosen as the first model due to its productivity. The conventional 1D prediction method and CFD were used. The prototyped compressor was tested by using cold air at the reduced speed of 110,000 r/min. Following to the 10 times model, a 5 times size of the final target model having fully 3-dimensional shape (impeller outer diameter 20mm, corrected rotational speed 500,000 r/min) was designed and tested by using hot gas at the reduced speed of 250,000 r/min.