整车控制器(vehicle control unit,VCU)作为无人驾驶方程式赛车的重要组成部分,直接影响赛车的稳定性、灵敏性和控制性。为满足中国大学生无人驾驶方程式大赛(Formula Student Autonomous China,FSAC)规则要求,分析了赛车状态机需求,以M...整车控制器(vehicle control unit,VCU)作为无人驾驶方程式赛车的重要组成部分,直接影响赛车的稳定性、灵敏性和控制性。为满足中国大学生无人驾驶方程式大赛(Formula Student Autonomous China,FSAC)规则要求,分析了赛车状态机需求,以MC9S12XET256单片机为主控芯片,基于控制器局域网络(controller area network,CAN)通信技术,设计了整车控制器软件系统,针对模数转换(analog to digital converter,A/D)采样技术、轮速测量技术及通信技术3个功能模块进行详细阐述,并进行实验。实验测试证明,所设计的控制器能够较好地完成无人驾驶方程式赛车的控制任务。展开更多
Cam mechanics is one of the most popular devices for generating irregular motions and is widely used in automatic equipment,such as textile machines,internal combustion engines,and other automatic devices.In order to ...Cam mechanics is one of the most popular devices for generating irregular motions and is widely used in automatic equipment,such as textile machines,internal combustion engines,and other automatic devices.In order to obtain a positive motion from the follower using a rotating cam,its shape should be correctly designed and manufactured.The development of an adequate CAD/CAM system for a cam profile CNC grinding machine is necessary to manufacture high-precision cams.The purpose of this study is the development of a CAD/CAM system and profile measuring device for a CNC grinding machine to obtain an optimal grinding speed with a constant surface roughness.Three types of disk cams were manufactured using the proposed algorithm and procedures to verify effectiveness of the developed CAD/CAM system.展开更多
Particle image velocimetry technique was used to analyze the trailing vortices and elucidate their rela-tionship with turbulence properties in a stirred tank of 0.48 m diameter,agitated by four different disc turbines...Particle image velocimetry technique was used to analyze the trailing vortices and elucidate their rela-tionship with turbulence properties in a stirred tank of 0.48 m diameter,agitated by four different disc turbines,in-cluding Rushton turbine,concaved blade disk turbine,half elliptical blade disk turbine,and parabolic blade disk turbine.Phase-averaged and phase-resolved flow fields near the impeller blades were measured and the structure of trailing vortices was studied in detail.The location,size and strength of vortices were determined by the simplified λ2-criterion and the results showed that the blade shape had great effect on the trailing vortex characteristics.The larger curvature resulted in longer residence time of the vortex at the impeller tip,bigger distance between the upper and lower vortices and longer vortex life,also leads to smaller and stronger vortices.In addition,the turbulent ki-netic energy and turbulent energy dissipation in the discharge flow were determined and discussed.High turbulent kinetic energy and turbulent energy dissipation regions were located between the upper and lower vortices and moved along with them.Although restricted to single phase flow,the presented results are essential for reliable de-sign and scale-up of stirred tank with disc turbines.展开更多
Experiments and numerical simulations of the wake field behind a horizontal-axis wind turbine are carried out to investigate the interaction between the atmospheric boundary layer and a stand-alone wind turbine. The t...Experiments and numerical simulations of the wake field behind a horizontal-axis wind turbine are carried out to investigate the interaction between the atmospheric boundary layer and a stand-alone wind turbine. The tested wind turbine(33 k W) has a rotor diameter of 14.8 m and hub height of 15.4 m. An anti-icing digital Sonic wind meter, an atmospheric pressure sensor, and a temperature and humidity sensor are installed in the upstream wind measurement mast. Wake velocity is measured by three US CSAT3 ultrasonic anemometers. To reflect the characteristics of the whole flow field, numerical simulations are performed through large eddy simulation(LES) and with the actuator line model. The experimental results show that the axial velocity deficit rate ranges from 32.18% to 63.22% at the three measuring points. Meanwhile, the time-frequency characteristics of the axial velocities at the left and right measuring points are different. Moreover, the average axial and lateral velocity deficit of the right measuring point is greater than that of the left measuring point. The turbulent kinetic energy(TKE) at the middle and right measuring points exhibit a periodic variation, and the vortex sheet-pass frequency is mostly similar to the rotational frequency of the rotor. However, this feature is not obvious for the left measuring point. Meanwhile, the power spectra of the vertical velocity fluctuation show the slope of-1, and those of lateral and axial velocity fluctuations show slopes of-1 and-5/3, respectively.However, the inertial subranges of axial velocity fluctuation at the left, middle, and right measuring points occur at 4, 7, and7 Hz, respectively. The above conclusion fully illustrates the asymmetry of the left and right measuring points. The experimental data and numerical simulation results collectively indicate that the wake is deflected to the right under the influence of lateral force. Therefore, wake asymmetry can be mainly attributed to the lateral force exerted by the wind turbine on the fluid.展开更多
文摘整车控制器(vehicle control unit,VCU)作为无人驾驶方程式赛车的重要组成部分,直接影响赛车的稳定性、灵敏性和控制性。为满足中国大学生无人驾驶方程式大赛(Formula Student Autonomous China,FSAC)规则要求,分析了赛车状态机需求,以MC9S12XET256单片机为主控芯片,基于控制器局域网络(controller area network,CAN)通信技术,设计了整车控制器软件系统,针对模数转换(analog to digital converter,A/D)采样技术、轮速测量技术及通信技术3个功能模块进行详细阐述,并进行实验。实验测试证明,所设计的控制器能够较好地完成无人驾驶方程式赛车的控制任务。
基金Project(RTI04-01-03) supported by the Regional Technology Innovation Program of Ministry of Knowledge Economy (MKE),Korea
文摘Cam mechanics is one of the most popular devices for generating irregular motions and is widely used in automatic equipment,such as textile machines,internal combustion engines,and other automatic devices.In order to obtain a positive motion from the follower using a rotating cam,its shape should be correctly designed and manufactured.The development of an adequate CAD/CAM system for a cam profile CNC grinding machine is necessary to manufacture high-precision cams.The purpose of this study is the development of a CAD/CAM system and profile measuring device for a CNC grinding machine to obtain an optimal grinding speed with a constant surface roughness.Three types of disk cams were manufactured using the proposed algorithm and procedures to verify effectiveness of the developed CAD/CAM system.
基金Supported by the National Natural Science Foundation of China(20776008 20821004 20990224) the National Basic Research Program of China(2007CB714300)
文摘Particle image velocimetry technique was used to analyze the trailing vortices and elucidate their rela-tionship with turbulence properties in a stirred tank of 0.48 m diameter,agitated by four different disc turbines,in-cluding Rushton turbine,concaved blade disk turbine,half elliptical blade disk turbine,and parabolic blade disk turbine.Phase-averaged and phase-resolved flow fields near the impeller blades were measured and the structure of trailing vortices was studied in detail.The location,size and strength of vortices were determined by the simplified λ2-criterion and the results showed that the blade shape had great effect on the trailing vortex characteristics.The larger curvature resulted in longer residence time of the vortex at the impeller tip,bigger distance between the upper and lower vortices and longer vortex life,also leads to smaller and stronger vortices.In addition,the turbulent ki-netic energy and turbulent energy dissipation in the discharge flow were determined and discussed.High turbulent kinetic energy and turbulent energy dissipation regions were located between the upper and lower vortices and moved along with them.Although restricted to single phase flow,the presented results are essential for reliable de-sign and scale-up of stirred tank with disc turbines.
基金supported by the National Basic Research Program of China(Grant No.2014CB046201) the National Natural Science Foundation of China(Grant Nos.51766009,51566011,51465033,and 51479114)+3 种基金 the Thousand Talents Program(Grant No.NSFC-RCUK_EPSRC) the Platform Construction of Ocean Energy Comprehensive Supporting Service(2014)(Grant No.GHME2014ZC01) the High-tech Ship Research Projects Sponsored by MIITC Floating Support Platform Project(Grant No.201622) State Key Laboratory of Ocean Engineering at Shanghai Jiao Tong University
文摘Experiments and numerical simulations of the wake field behind a horizontal-axis wind turbine are carried out to investigate the interaction between the atmospheric boundary layer and a stand-alone wind turbine. The tested wind turbine(33 k W) has a rotor diameter of 14.8 m and hub height of 15.4 m. An anti-icing digital Sonic wind meter, an atmospheric pressure sensor, and a temperature and humidity sensor are installed in the upstream wind measurement mast. Wake velocity is measured by three US CSAT3 ultrasonic anemometers. To reflect the characteristics of the whole flow field, numerical simulations are performed through large eddy simulation(LES) and with the actuator line model. The experimental results show that the axial velocity deficit rate ranges from 32.18% to 63.22% at the three measuring points. Meanwhile, the time-frequency characteristics of the axial velocities at the left and right measuring points are different. Moreover, the average axial and lateral velocity deficit of the right measuring point is greater than that of the left measuring point. The turbulent kinetic energy(TKE) at the middle and right measuring points exhibit a periodic variation, and the vortex sheet-pass frequency is mostly similar to the rotational frequency of the rotor. However, this feature is not obvious for the left measuring point. Meanwhile, the power spectra of the vertical velocity fluctuation show the slope of-1, and those of lateral and axial velocity fluctuations show slopes of-1 and-5/3, respectively.However, the inertial subranges of axial velocity fluctuation at the left, middle, and right measuring points occur at 4, 7, and7 Hz, respectively. The above conclusion fully illustrates the asymmetry of the left and right measuring points. The experimental data and numerical simulation results collectively indicate that the wake is deflected to the right under the influence of lateral force. Therefore, wake asymmetry can be mainly attributed to the lateral force exerted by the wind turbine on the fluid.