In order to solve the problem that me traditional signature-based detection technology cannot effectively detect unknown malware, we propose in this study a smartphone malware detection model (SP-MDM) based on artif...In order to solve the problem that me traditional signature-based detection technology cannot effectively detect unknown malware, we propose in this study a smartphone malware detection model (SP-MDM) based on artificial immune system, in which static malware analysis and dynamic malware analysis techniques are combined, and antigens are generated by encoding the characteristics extracted from the malware. Based on negative selection algorithm, the mature detectors are generated. By introducing clonal selection algorithm, the detectors with higher affinity are selected to undergo a proliferation and somatic hyper-mutation process, so that more excellent detector offspring can be generated. Experimental result shows that the detection model has a higher detection rate for unknown smartphone malware, and better detection performance can be achieved by increasing the clone generation.展开更多
Software performance evaluation in multimedia communication systems is typically formulated into a multi-layered client-server queuing network(MLCSQN) problem. However, the existing analytical methods to MLCSQN model ...Software performance evaluation in multimedia communication systems is typically formulated into a multi-layered client-server queuing network(MLCSQN) problem. However, the existing analytical methods to MLCSQN model cannot provide satisfactory solution in terms of accuracy, convergence and consideration of interlocking effects. To this end, this paper proposes a heuristic solving method for MLCSQN model to boost the performance prediction of distributed multimedia software systems. The core concept of this method is referred to as the basic model, which can be further decomposed into two sub-models: client sub-model and server sub-model. The client sub-model calculates think time for server sub-model, and the server sub-model calculates waiting time for client sub-model. Using a breadthfirst traversal from leaf nodes to the root node and vice versa, the basic model is then adapted to MLCSQN, with net sub-models iteratively resolved. Similarly, the interlocking problem is effectively addressed with the help of the basic model. This analytical solver enjoys advantages of fast convergence, independence on specific average value analysis(MVA) methods and eliminating interlocking effects.Numerical experimental results on accuracy and computation efficiency verify its superiority over anchors.展开更多
基金This work was supported in part by National Natural Science Foundation of China under Grants No.61101108,National S&T Major Program under Grants No.2011ZX03002-005-01
文摘In order to solve the problem that me traditional signature-based detection technology cannot effectively detect unknown malware, we propose in this study a smartphone malware detection model (SP-MDM) based on artificial immune system, in which static malware analysis and dynamic malware analysis techniques are combined, and antigens are generated by encoding the characteristics extracted from the malware. Based on negative selection algorithm, the mature detectors are generated. By introducing clonal selection algorithm, the detectors with higher affinity are selected to undergo a proliferation and somatic hyper-mutation process, so that more excellent detector offspring can be generated. Experimental result shows that the detection model has a higher detection rate for unknown smartphone malware, and better detection performance can be achieved by increasing the clone generation.
基金supported by the Application Research of the Remote Sensing Technology on Global Energy Internet(JYYKJXM(2017)011)the National Natural Science Foundation of China(61671332,41701518,41771452,41771454,U1736206)+4 种基金National key R&D Project(2016YFE0202300)Hubei Province Technological Innovation Major Project(2017AAA123)Applied Basic Research Program of Wuhan City(2016010101010025)Basic Research Program of Shenzhen(JCYJ20170306171431656)the Fundamental Research Funds for the Central Universities(2042016gf0033)
文摘Software performance evaluation in multimedia communication systems is typically formulated into a multi-layered client-server queuing network(MLCSQN) problem. However, the existing analytical methods to MLCSQN model cannot provide satisfactory solution in terms of accuracy, convergence and consideration of interlocking effects. To this end, this paper proposes a heuristic solving method for MLCSQN model to boost the performance prediction of distributed multimedia software systems. The core concept of this method is referred to as the basic model, which can be further decomposed into two sub-models: client sub-model and server sub-model. The client sub-model calculates think time for server sub-model, and the server sub-model calculates waiting time for client sub-model. Using a breadthfirst traversal from leaf nodes to the root node and vice versa, the basic model is then adapted to MLCSQN, with net sub-models iteratively resolved. Similarly, the interlocking problem is effectively addressed with the help of the basic model. This analytical solver enjoys advantages of fast convergence, independence on specific average value analysis(MVA) methods and eliminating interlocking effects.Numerical experimental results on accuracy and computation efficiency verify its superiority over anchors.