By decoupling control plane and data plane,Software-Defined Networking(SDN) approach simplifies network management and speeds up network innovations.These benefits have led not only to prototypes,but also real SDN dep...By decoupling control plane and data plane,Software-Defined Networking(SDN) approach simplifies network management and speeds up network innovations.These benefits have led not only to prototypes,but also real SDN deployments.For wide-area SDN deployments,multiple controllers are often required,and the placement of these controllers becomes a particularly important task in the SDN context.This paper studies the problem of placing controllers in SDNs,so as to maximize the reliability of SDN control networks.We present a novel metric,called expected percentage of control path loss,to characterize the reliability of SDN control networks.We formulate the reliability-aware control placement problem,prove its NP-hardness,and examine several placement algorithms that can solve this problem.Through extensive simulations using real topologies,we show how the number of controllers and their placement influence the reliability of SDN control networks.Besides,we also found that,through strategic controller placement,the reliability of SDN control networks can be significantly improved without introducing unacceptable switch-to-controller latencies.展开更多
In recent years, realising a "clean- state" design for the future Internet has become an important research focus. An architecture com- bining an Information-Centric Network (ICN) and Sottware-Defmed Network (SDN...In recent years, realising a "clean- state" design for the future Internet has become an important research focus. An architecture com- bining an Information-Centric Network (ICN) and Sottware-Defmed Network (SDN) (IC-SDN) has gradually attracted more attention. How- ever, the existing studies regarding IC-SDN still lack support in terms of the "network status awareness" function, resulting in unreasonable resource allocation. In this paper, we propose a new status-aware resource adaptation sche- me, i.e. a status-aware module is embedded into basic elements (Forwarding Node (FN) and Resource adaption Manager (RM)). The FNs collect the network status dynamically for the controller to reallocate network resources accor- ding to the fluctuations in environmental con- ditions. Simulation results show that, compared with the existing IC-SDN mechanism, the pro- posed scheme reduced the link bandwidth var- iance by 56% and the content delivery latency by 40%. The proof-of-concept implementation demonstrates the feasibility of our proposed sc- heme for small-scale deployment.展开更多
With the increase of network complexity,the flexibility of network control and management becomes a nontrivial problem.Both Software Defined Network(SDN) and Autonomic Network technologies are sophisticated technologi...With the increase of network complexity,the flexibility of network control and management becomes a nontrivial problem.Both Software Defined Network(SDN) and Autonomic Network technologies are sophisticated technologies for the network control and management.These two technologies could be combined together to construct a software defined self-managing solution for the future network.An autonomic QoS management mechanism in Software Defined Network(AQSDN) is proposed in this paper.In AQSDN,the various QoS features can be configured autonomically in an OpenFlow switch through extending the OpenFlow and OF-Config protocols.Based on AQSDN,a novel packet context-aware QoS model(PCaQoS) is also introduced for improving the network QoS.PCaQoS takes packet context into account when packet is marked and managed into forwarding queues.The implementation of a video application's prototype which evaluates the self-configuration feature of the AQSDN and the enhancement ability of the PCaQoS is presented in order to validate this design.展开更多
基金supported in part by the National High Technology Research and Development Program(863 Program)of China under Grant No.2011AA01A101the National High Technology Research and Development Program(863 Program)of China under Grant No.2013AA01330the National High Technology Research and Development Program(863 Program)of China under Grant No.2013AA013303
文摘By decoupling control plane and data plane,Software-Defined Networking(SDN) approach simplifies network management and speeds up network innovations.These benefits have led not only to prototypes,but also real SDN deployments.For wide-area SDN deployments,multiple controllers are often required,and the placement of these controllers becomes a particularly important task in the SDN context.This paper studies the problem of placing controllers in SDNs,so as to maximize the reliability of SDN control networks.We present a novel metric,called expected percentage of control path loss,to characterize the reliability of SDN control networks.We formulate the reliability-aware control placement problem,prove its NP-hardness,and examine several placement algorithms that can solve this problem.Through extensive simulations using real topologies,we show how the number of controllers and their placement influence the reliability of SDN control networks.Besides,we also found that,through strategic controller placement,the reliability of SDN control networks can be significantly improved without introducing unacceptable switch-to-controller latencies.
基金supported in part by the National Basic Research Program of China(973 Program)under Grant No.2013CB329100the National Natural Science Foundation of China under Grants No.61232017,No.61271200the Fundamental Research Funds for the Central Universities under Grant No.2013YJS007
文摘In recent years, realising a "clean- state" design for the future Internet has become an important research focus. An architecture com- bining an Information-Centric Network (ICN) and Sottware-Defmed Network (SDN) (IC-SDN) has gradually attracted more attention. How- ever, the existing studies regarding IC-SDN still lack support in terms of the "network status awareness" function, resulting in unreasonable resource allocation. In this paper, we propose a new status-aware resource adaptation sche- me, i.e. a status-aware module is embedded into basic elements (Forwarding Node (FN) and Resource adaption Manager (RM)). The FNs collect the network status dynamically for the controller to reallocate network resources accor- ding to the fluctuations in environmental con- ditions. Simulation results show that, compared with the existing IC-SDN mechanism, the pro- posed scheme reduced the link bandwidth var- iance by 56% and the content delivery latency by 40%. The proof-of-concept implementation demonstrates the feasibility of our proposed sc- heme for small-scale deployment.
基金This work was supported in part by the National High Technology Research and Development Program (863 Program) of China under Grant No. 2011AA01A101, No.2013AA013303, No.2013AA013301and National Natural science foundation of China No. 61370197 & 61271041.
文摘With the increase of network complexity,the flexibility of network control and management becomes a nontrivial problem.Both Software Defined Network(SDN) and Autonomic Network technologies are sophisticated technologies for the network control and management.These two technologies could be combined together to construct a software defined self-managing solution for the future network.An autonomic QoS management mechanism in Software Defined Network(AQSDN) is proposed in this paper.In AQSDN,the various QoS features can be configured autonomically in an OpenFlow switch through extending the OpenFlow and OF-Config protocols.Based on AQSDN,a novel packet context-aware QoS model(PCaQoS) is also introduced for improving the network QoS.PCaQoS takes packet context into account when packet is marked and managed into forwarding queues.The implementation of a video application's prototype which evaluates the self-configuration feature of the AQSDN and the enhancement ability of the PCaQoS is presented in order to validate this design.