Objective:To investigate the feasibility of minimal invasive repair of cartilage defect by arthroscope-aided microfracture surgery and autologous transplantation of mesenchymal stem cells. Methods: Bone marrow of mini...Objective:To investigate the feasibility of minimal invasive repair of cartilage defect by arthroscope-aided microfracture surgery and autologous transplantation of mesenchymal stem cells. Methods: Bone marrow of minipigs was taken out and the bone marrow derived mesenchymal stem cells (BMSCs) were isolated and cultured to passage 3. Then 6 minipigs were randomly divided into 2 groups with 6 knees in each group. After the articular cartilage defect was induced in each knee, the left defect received microfracture surgery and was injected with 2.5 ml BMSCs cells at a concentration of 3×107 cells/ml into the articular cavity; while right knee got single microfracture or served as blank control group. The animals were killed at 8 or 16 weeks, and the repair tissue was histologically and immunohistochemically examined for the presence of type Ⅱ collagen and glycosaminoglycans (GAGs) at 8 and 16 weeks. Results: Eight weeks after the surgery, the overlying articular surface of the cartilage defect showed normal color and integrated to adjacent cartilage. And 16 weeks after surgery, hyaline cartilage was observed at the repairing tissues and immunostaining indicated the diffuse presence of this type Ⅱ collagen and GAGs throughout the repair cartilage in the treated defects. Single microfracture group had the repairing of fibrocartilage, while during the treatment, the defects of blank group were covered with fewer fiber tissues, and no blood capillary growth or any immunological rejection was observed. Conclusion: Microfracture technique and BMSCs transplantation to repair cartilage defect is characterized with minimal invasion and easy operation, and it will greatly promote the regeneration repair of articular cartilage defect.展开更多
This paper proposes an optimal configuration of the distributed hybrid renewable generations based on the stand-alone micro-grid system, considering the diesel as the main control source. Due to the natural sources an...This paper proposes an optimal configuration of the distributed hybrid renewable generations based on the stand-alone micro-grid system, considering the diesel as the main control source. Due to the natural sources and load of user changes randomly and the non-tinearity of the power output by renewable generations, an intelligent optimization method based on the improvement of the genetic algorithm and the control strategy are discussed. The instance analysis is compared with the optimization result of the hybrid system based on HOMER (hybrid optimization of multiple energy resources) and GA (genetic algorithm) method on Matlab software. The simulation result of the optimal configuration showed the new hybrid renewable system and would improve the power supply situation which decreased the cost of energy greatly compared with the conventional form of power supply system which was operated only by diesel. The conclusion of the comparing result between HOMER and GA method shows the advantages of the strategy for the diesel as main control sources.展开更多
The article reviews a brief literature on the modeling of hydrogen storage device for fuel cell. Different dimensional approaches in modeling hydrogen absorption/desorption in a metal hydride reactor for use in fuel c...The article reviews a brief literature on the modeling of hydrogen storage device for fuel cell. Different dimensional approaches in modeling hydrogen absorption/desorption in a metal hydride reactor for use in fuel cell are summarized. Mathematical modeling equations involved are also stated. The effect of various operating parameters such as temperature, concentration, viscosity, thermal conductivity and time on the gas is also verified. The importance of various simulation software with reference to their major functions is also identified. The review concludes on the opportunities and challenges with the use of hydrogen as an alternative renewable energy.展开更多
Objective: To study the feasibility of regenerating a whole menisci using poly-(3- hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) scaffolds loaded with meniscal cells in rabbits undergoing total meniscectomy, and t...Objective: To study the feasibility of regenerating a whole menisci using poly-(3- hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) scaffolds loaded with meniscal cells in rabbits undergoing total meniscectomy, and to explore its protective effect on carti- lage degeneration. Methods: A solvent casting and particulate leaching technique was employed to fabricate biodegradable PHBV scaffolds into a meniscal shape. The proliferated meniscal cells were seeded onto the polymer scaffolds, transplanted into rabbit knee joints whose lateral menisci had been removed. Eight to 18 weeks after transplantation, the rege- nerated neomenisci were evaluated by gross and histologi- cal observations. Cartilage Mankin score. degeneration was assessed by Results: Eighteen weeks after transplantation, the implants formed neomenisci. Hematoxylin and eosin (HE) staining of the neomenisci sections revealed regeneration of fibrocartilage. Type I collagen in the neomenisci was also proved similar to normal meniscal tissue by immunohis-tochemical analysis and Sirius scarlet trinitrophenol staining. Articular cartilage degeneration was observed 8 weeks af- ter implantation. It was less severe as compared with that in total meniscectomy controls and no further degeneration was observed at 18 weeks. At that time, the regenerated neomenisci strongly resembled normal meniscal fibrocarti- lage in gross and histological appearance, and its mechani- cal property was also close to that of normal meniscus. Conclusions: The present study demonstrates the feasibility of tissue-engineering a whole meniscal structure in total meniscectomy rabbit models using biodegradable PHBV scaffolds together with cultured allogeneic meniscal cells. Cartilage degeneration is decreased. But long-term in vivo investigations on the histological structure and cartilage degeneration of the neomenisci regenerated by this method are still necessary to determine the clinical potential of this tissue engineering avenue.展开更多
Long-segment defects remain a major problem in clinical treatment of tubular tissue reconstruction.The design of tubular scaffold with desired structure and functional properties suitable for tubular tissue regenerati...Long-segment defects remain a major problem in clinical treatment of tubular tissue reconstruction.The design of tubular scaffold with desired structure and functional properties suitable for tubular tissue regeneration remains a great challenge in regenerative medicine.Here,we present a reliable method to rapidly fabricate tissueengineered tubular scaffold with hierarchical structure via 4-axis printing system.The fabrication process can be adapted to various biomaterials including hydrogels,thermoplastic materials and thermosetting materials.Using polycaprolactone(PCL)as an example,we successfully fabricated the scaffolds with tunable tubular architecture,controllable mesh structure,radial elasticity,good flexibility,and luminal patency.As a preliminary demonstration of the applications of this technology,we prepared a hybrid tubular scaffold via the combination of the 4-axis printed elastic poly(glycerol sebacate)(PGS)bio-spring and electrospun gelatin nanofibers.The scaffolds seeded with chondrocytes formed tubular mature cartilage-like tissue both via in vitro culture and subcutaneous implantation in the nude mouse,which showed great potential for tracheal cartilage reconstruction.展开更多
基金Supported by the National Natural Science Foundation ofChina (No. 30070224)the Key Project of the ScientificResearch Foundation for Medical Science and Public Healthof PLA(No. 01Z072)
文摘Objective:To investigate the feasibility of minimal invasive repair of cartilage defect by arthroscope-aided microfracture surgery and autologous transplantation of mesenchymal stem cells. Methods: Bone marrow of minipigs was taken out and the bone marrow derived mesenchymal stem cells (BMSCs) were isolated and cultured to passage 3. Then 6 minipigs were randomly divided into 2 groups with 6 knees in each group. After the articular cartilage defect was induced in each knee, the left defect received microfracture surgery and was injected with 2.5 ml BMSCs cells at a concentration of 3×107 cells/ml into the articular cavity; while right knee got single microfracture or served as blank control group. The animals were killed at 8 or 16 weeks, and the repair tissue was histologically and immunohistochemically examined for the presence of type Ⅱ collagen and glycosaminoglycans (GAGs) at 8 and 16 weeks. Results: Eight weeks after the surgery, the overlying articular surface of the cartilage defect showed normal color and integrated to adjacent cartilage. And 16 weeks after surgery, hyaline cartilage was observed at the repairing tissues and immunostaining indicated the diffuse presence of this type Ⅱ collagen and GAGs throughout the repair cartilage in the treated defects. Single microfracture group had the repairing of fibrocartilage, while during the treatment, the defects of blank group were covered with fewer fiber tissues, and no blood capillary growth or any immunological rejection was observed. Conclusion: Microfracture technique and BMSCs transplantation to repair cartilage defect is characterized with minimal invasion and easy operation, and it will greatly promote the regeneration repair of articular cartilage defect.
文摘This paper proposes an optimal configuration of the distributed hybrid renewable generations based on the stand-alone micro-grid system, considering the diesel as the main control source. Due to the natural sources and load of user changes randomly and the non-tinearity of the power output by renewable generations, an intelligent optimization method based on the improvement of the genetic algorithm and the control strategy are discussed. The instance analysis is compared with the optimization result of the hybrid system based on HOMER (hybrid optimization of multiple energy resources) and GA (genetic algorithm) method on Matlab software. The simulation result of the optimal configuration showed the new hybrid renewable system and would improve the power supply situation which decreased the cost of energy greatly compared with the conventional form of power supply system which was operated only by diesel. The conclusion of the comparing result between HOMER and GA method shows the advantages of the strategy for the diesel as main control sources.
文摘The article reviews a brief literature on the modeling of hydrogen storage device for fuel cell. Different dimensional approaches in modeling hydrogen absorption/desorption in a metal hydride reactor for use in fuel cell are summarized. Mathematical modeling equations involved are also stated. The effect of various operating parameters such as temperature, concentration, viscosity, thermal conductivity and time on the gas is also verified. The importance of various simulation software with reference to their major functions is also identified. The review concludes on the opportunities and challenges with the use of hydrogen as an alternative renewable energy.
基金This study was supported by the fundation of Hi-tech Research and Development Program (863 Program) project (2008AA02Z437) and the National Natural Science Foundation of China (No. 30600632).
文摘Objective: To study the feasibility of regenerating a whole menisci using poly-(3- hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) scaffolds loaded with meniscal cells in rabbits undergoing total meniscectomy, and to explore its protective effect on carti- lage degeneration. Methods: A solvent casting and particulate leaching technique was employed to fabricate biodegradable PHBV scaffolds into a meniscal shape. The proliferated meniscal cells were seeded onto the polymer scaffolds, transplanted into rabbit knee joints whose lateral menisci had been removed. Eight to 18 weeks after transplantation, the rege- nerated neomenisci were evaluated by gross and histologi- cal observations. Cartilage Mankin score. degeneration was assessed by Results: Eighteen weeks after transplantation, the implants formed neomenisci. Hematoxylin and eosin (HE) staining of the neomenisci sections revealed regeneration of fibrocartilage. Type I collagen in the neomenisci was also proved similar to normal meniscal tissue by immunohis-tochemical analysis and Sirius scarlet trinitrophenol staining. Articular cartilage degeneration was observed 8 weeks af- ter implantation. It was less severe as compared with that in total meniscectomy controls and no further degeneration was observed at 18 weeks. At that time, the regenerated neomenisci strongly resembled normal meniscal fibrocarti- lage in gross and histological appearance, and its mechani- cal property was also close to that of normal meniscus. Conclusions: The present study demonstrates the feasibility of tissue-engineering a whole meniscal structure in total meniscectomy rabbit models using biodegradable PHBV scaffolds together with cultured allogeneic meniscal cells. Cartilage degeneration is decreased. But long-term in vivo investigations on the histological structure and cartilage degeneration of the neomenisci regenerated by this method are still necessary to determine the clinical potential of this tissue engineering avenue.
基金supported by the National Key Research and Development Program of China (2018YFB1105602 and 2017YFC1103900)the National Natural Science Foundation of China (21574019, 81320108010, 81571823 and 81871502)+4 种基金the Natural Science Foundation of Shanghai (18ZR1401900)the Fundamental Research Funds for the Central Universities, DHU Distinguished Young Professor Program (LZA2019001)the Science and Technology Commission of Shanghai (17DZ2260100 and 15DZ1941600)the Program for Shanghai Outstanding Medical Academic Leaderthe Program of Shanghai Technology Research Leader
文摘Long-segment defects remain a major problem in clinical treatment of tubular tissue reconstruction.The design of tubular scaffold with desired structure and functional properties suitable for tubular tissue regeneration remains a great challenge in regenerative medicine.Here,we present a reliable method to rapidly fabricate tissueengineered tubular scaffold with hierarchical structure via 4-axis printing system.The fabrication process can be adapted to various biomaterials including hydrogels,thermoplastic materials and thermosetting materials.Using polycaprolactone(PCL)as an example,we successfully fabricated the scaffolds with tunable tubular architecture,controllable mesh structure,radial elasticity,good flexibility,and luminal patency.As a preliminary demonstration of the applications of this technology,we prepared a hybrid tubular scaffold via the combination of the 4-axis printed elastic poly(glycerol sebacate)(PGS)bio-spring and electrospun gelatin nanofibers.The scaffolds seeded with chondrocytes formed tubular mature cartilage-like tissue both via in vitro culture and subcutaneous implantation in the nude mouse,which showed great potential for tracheal cartilage reconstruction.