Vacuum provides an alternative in reducing the length of preloading period for soft soil consolidation. In this method, soft clay foundation is preloaded by reducing the pore-water pressures through the application of...Vacuum provides an alternative in reducing the length of preloading period for soft soil consolidation. In this method, soft clay foundation is preloaded by reducing the pore-water pressures through the application of vacuum pressure in combination with surcharge preloading. A full scale and fully instrumented test embankment was constructed. A drainage pattern system combined with 22 m prefabricated vertical drains (PVDs) length was used with triangular pattern of 1.2 m spacing. Among the foundation instrumentation, piezometers were installed in the foundation subsoil at varying depth to measure the pore-water pressures. After 6 months of vacuum pressure application at 80 kPa, the test embankments were raised to a maximum height of 5.5 m. The effect of vacuum preloading was investigated by the field conditions, maintaining higher vacuum pressures, and unloading vacuum. The results demonstrated the efficiency of combined vacuum and surcharge preloading.展开更多
The objective of this work is to compare the responses of geosynthetically-reinforced embankment and unreinforced embankment due to road widening by using the centrifuge model tests and a two-dimensional(2D) finite el...The objective of this work is to compare the responses of geosynthetically-reinforced embankment and unreinforced embankment due to road widening by using the centrifuge model tests and a two-dimensional(2D) finite element(FE) model. The measured and calculated responses of the embankment and foundation exposed to road widening include the settlement,horizontal displacement,pore water pressure,and shear stresses. It is found that the road widening changed the transverse slope of the original pavement surface resulting from the nonuniform settlements. The maximum horizontal movement is found to be located at the shoulder of the original embankment. Although the difference is small,it is clearly seen that the geosynthetic reinforcement reduces the nonuniform settlements and horizontal movements due to road widening. Thus the reinforcement reduces the potential of pavement cracking and increases the stability of the embankment on soft ground in road widening.展开更多
文摘Vacuum provides an alternative in reducing the length of preloading period for soft soil consolidation. In this method, soft clay foundation is preloaded by reducing the pore-water pressures through the application of vacuum pressure in combination with surcharge preloading. A full scale and fully instrumented test embankment was constructed. A drainage pattern system combined with 22 m prefabricated vertical drains (PVDs) length was used with triangular pattern of 1.2 m spacing. Among the foundation instrumentation, piezometers were installed in the foundation subsoil at varying depth to measure the pore-water pressures. After 6 months of vacuum pressure application at 80 kPa, the test embankments were raised to a maximum height of 5.5 m. The effect of vacuum preloading was investigated by the field conditions, maintaining higher vacuum pressures, and unloading vacuum. The results demonstrated the efficiency of combined vacuum and surcharge preloading.
基金Project(200231800032) supported by Research on Transportation Construction in Western, China
文摘The objective of this work is to compare the responses of geosynthetically-reinforced embankment and unreinforced embankment due to road widening by using the centrifuge model tests and a two-dimensional(2D) finite element(FE) model. The measured and calculated responses of the embankment and foundation exposed to road widening include the settlement,horizontal displacement,pore water pressure,and shear stresses. It is found that the road widening changed the transverse slope of the original pavement surface resulting from the nonuniform settlements. The maximum horizontal movement is found to be located at the shoulder of the original embankment. Although the difference is small,it is clearly seen that the geosynthetic reinforcement reduces the nonuniform settlements and horizontal movements due to road widening. Thus the reinforcement reduces the potential of pavement cracking and increases the stability of the embankment on soft ground in road widening.