Vacuum provides an alternative in reducing the length of preloading period for soft soil consolidation. In this method, soft clay foundation is preloaded by reducing the pore-water pressures through the application of...Vacuum provides an alternative in reducing the length of preloading period for soft soil consolidation. In this method, soft clay foundation is preloaded by reducing the pore-water pressures through the application of vacuum pressure in combination with surcharge preloading. A full scale and fully instrumented test embankment was constructed. A drainage pattern system combined with 22 m prefabricated vertical drains (PVDs) length was used with triangular pattern of 1.2 m spacing. Among the foundation instrumentation, piezometers were installed in the foundation subsoil at varying depth to measure the pore-water pressures. After 6 months of vacuum pressure application at 80 kPa, the test embankments were raised to a maximum height of 5.5 m. The effect of vacuum preloading was investigated by the field conditions, maintaining higher vacuum pressures, and unloading vacuum. The results demonstrated the efficiency of combined vacuum and surcharge preloading.展开更多
To obtain the vertical earth pressure on a soft foundation box culvert and investigate the interaction of the soil-culvert-foundation system, both a centrifugal model test and a numerical simulation were conducted and...To obtain the vertical earth pressure on a soft foundation box culvert and investigate the interaction of the soil-culvert-foundation system, both a centrifugal model test and a numerical simulation were conducted and the comparisons with the current methods to determine the load on a culvert were completed. The results of the model test and numerical analysis are in satisfactory agreement, which shows that the direction of the shear stress between the culvert and the adjacent embankment depends on the differential settlement between them. A vertical earth pressure concentration appears on the culvert with a rigid piles foundation because of a downward shear stress. The ratio of the load on a soft foundation culvert and the overburden pressure above the culvert raises first and then decreases as the backfill height increases. In order to reduce the load on a culvert, it is suggested to limit the stiffness difference of the foundations under the culvert and embankment and to use a light backfill over the culvert.展开更多
This article discusses the flyash mechanical properties and analyzes stability of two flyash dams under earthquake by finite element methods. It is studied whether the mixture of flyash and clay can be used as the fil...This article discusses the flyash mechanical properties and analyzes stability of two flyash dams under earthquake by finite element methods. It is studied whether the mixture of flyash and clay can be used as the fill for a dam located in an earthquake region.展开更多
The rapid development of high-speed transportation infrastructure such as highway and high-speed railway has resulted in the advancement of soft soil improvement techniques. Vacuum preloading combined with vertical dr...The rapid development of high-speed transportation infrastructure such as highway and high-speed railway has resulted in the advancement of soft soil improvement techniques. Vacuum preloading combined with vertical drains has been proved to be an effective method in the treatment of soft foundation. A three-dimensional numerical analysis of the coupled methods was presented, in which the smear zone and the well resistance were taken into account. The variations of the basic soil parameters including the permeability coefficient and the coefficient of volume compressibility were considered in the numerical model. The result of the numerical model was then compared to the measured value. The results indicate that the decrease of coefficient of volume compressibility accelerates the consolidation of the soil while the influence of hydraulic conductivity is insignificant. A cube drain presents the closest result to the real situation compared to the other equivalent methods of prefabricated vertical drain (PVD). The case study indicates that the numerical model with variation of soil parameters is closer to the measured value than the numerical model without variation of soil parameters.展开更多
The reinforced two layered foundation bed considered for study consists of a layer of granular fill overlying soft non-homogeneous clay with inclusion or reinforcement (geosymhetic strips, grids or sheets) in single...The reinforced two layered foundation bed considered for study consists of a layer of granular fill overlying soft non-homogeneous clay with inclusion or reinforcement (geosymhetic strips, grids or sheets) in single layer at soil-granular fill interface A method is developed to estimate the bearing capacity of a strip footing on the surface of a reinforced foundation bed over a finite layer of clay whose undrained strength increases linearly with depth incorporating the contribution of axial resistance of the reinforcement together with those of granular fill and soft ground. Parametric studies presented quantify the improvement in bearing capacity.展开更多
This paper expatiated the field test of large diameter cast in place piles embedded in soft rock, including static loading test, high or low strain dynamic test, measurement of stresses and strains of pile body, and p...This paper expatiated the field test of large diameter cast in place piles embedded in soft rock, including static loading test, high or low strain dynamic test, measurement of stresses and strains of pile body, and pressure measurements between pile tip and soft rock. The relative in situ test problems are discussed. Based on the limit equilibrium theory and the load transfer equation, a synthesis method of analyzing the ultimate carrying capacity of single large diameter pile is put forward. The research results show that the key to determining the ultimate carrying capacity of single pile with a large diameter is the analysis of the intensity of soft rock.展开更多
CFG pile has been widely applied as one of the common ground treatment techniques. As a concealed work, the construction quality of pile foundation not only relates to the success of the project, but also concerns the...CFG pile has been widely applied as one of the common ground treatment techniques. As a concealed work, the construction quality of pile foundation not only relates to the success of the project, but also concerns the benefits of thousands of hot, seholds. Only strengthening the supervision and management during the construction and strictly designing and specifying CFG pile can ensure the construction quality of CFG pile. But most researches focus on operating mechanism and theoretical analysis, and there are fewer researches about the construction of CFG pile. The real construction of CFG pile has no specified operation and lacks of the construction guidance, which not only causes great problems and has great influence on the intensity of CFG pile, but also makes the real pile body have great difference from the design requirements. Therefore, the study on construction of CFG pile in the paper has great significance.展开更多
文摘Vacuum provides an alternative in reducing the length of preloading period for soft soil consolidation. In this method, soft clay foundation is preloaded by reducing the pore-water pressures through the application of vacuum pressure in combination with surcharge preloading. A full scale and fully instrumented test embankment was constructed. A drainage pattern system combined with 22 m prefabricated vertical drains (PVDs) length was used with triangular pattern of 1.2 m spacing. Among the foundation instrumentation, piezometers were installed in the foundation subsoil at varying depth to measure the pore-water pressures. After 6 months of vacuum pressure application at 80 kPa, the test embankments were raised to a maximum height of 5.5 m. The effect of vacuum preloading was investigated by the field conditions, maintaining higher vacuum pressures, and unloading vacuum. The results demonstrated the efficiency of combined vacuum and surcharge preloading.
基金Project(2012AA112504) supported by the National High Technology Research and Development Program of ChinaProjects(51108048,51478054) supported by the National Natural Science Foundation of China
文摘To obtain the vertical earth pressure on a soft foundation box culvert and investigate the interaction of the soil-culvert-foundation system, both a centrifugal model test and a numerical simulation were conducted and the comparisons with the current methods to determine the load on a culvert were completed. The results of the model test and numerical analysis are in satisfactory agreement, which shows that the direction of the shear stress between the culvert and the adjacent embankment depends on the differential settlement between them. A vertical earth pressure concentration appears on the culvert with a rigid piles foundation because of a downward shear stress. The ratio of the load on a soft foundation culvert and the overburden pressure above the culvert raises first and then decreases as the backfill height increases. In order to reduce the load on a culvert, it is suggested to limit the stiffness difference of the foundations under the culvert and embankment and to use a light backfill over the culvert.
文摘This article discusses the flyash mechanical properties and analyzes stability of two flyash dams under earthquake by finite element methods. It is studied whether the mixture of flyash and clay can be used as the fill for a dam located in an earthquake region.
基金Project(2010THZ021)supported by Tsinghua University,ChinaProject(50978139)supported by the National Natural Science Foundation of ChinaProject(2012CB719804)supported by the National Basic Research Program of China
文摘The rapid development of high-speed transportation infrastructure such as highway and high-speed railway has resulted in the advancement of soft soil improvement techniques. Vacuum preloading combined with vertical drains has been proved to be an effective method in the treatment of soft foundation. A three-dimensional numerical analysis of the coupled methods was presented, in which the smear zone and the well resistance were taken into account. The variations of the basic soil parameters including the permeability coefficient and the coefficient of volume compressibility were considered in the numerical model. The result of the numerical model was then compared to the measured value. The results indicate that the decrease of coefficient of volume compressibility accelerates the consolidation of the soil while the influence of hydraulic conductivity is insignificant. A cube drain presents the closest result to the real situation compared to the other equivalent methods of prefabricated vertical drain (PVD). The case study indicates that the numerical model with variation of soil parameters is closer to the measured value than the numerical model without variation of soil parameters.
文摘The reinforced two layered foundation bed considered for study consists of a layer of granular fill overlying soft non-homogeneous clay with inclusion or reinforcement (geosymhetic strips, grids or sheets) in single layer at soil-granular fill interface A method is developed to estimate the bearing capacity of a strip footing on the surface of a reinforced foundation bed over a finite layer of clay whose undrained strength increases linearly with depth incorporating the contribution of axial resistance of the reinforcement together with those of granular fill and soft ground. Parametric studies presented quantify the improvement in bearing capacity.
文摘This paper expatiated the field test of large diameter cast in place piles embedded in soft rock, including static loading test, high or low strain dynamic test, measurement of stresses and strains of pile body, and pressure measurements between pile tip and soft rock. The relative in situ test problems are discussed. Based on the limit equilibrium theory and the load transfer equation, a synthesis method of analyzing the ultimate carrying capacity of single large diameter pile is put forward. The research results show that the key to determining the ultimate carrying capacity of single pile with a large diameter is the analysis of the intensity of soft rock.
文摘CFG pile has been widely applied as one of the common ground treatment techniques. As a concealed work, the construction quality of pile foundation not only relates to the success of the project, but also concerns the benefits of thousands of hot, seholds. Only strengthening the supervision and management during the construction and strictly designing and specifying CFG pile can ensure the construction quality of CFG pile. But most researches focus on operating mechanism and theoretical analysis, and there are fewer researches about the construction of CFG pile. The real construction of CFG pile has no specified operation and lacks of the construction guidance, which not only causes great problems and has great influence on the intensity of CFG pile, but also makes the real pile body have great difference from the design requirements. Therefore, the study on construction of CFG pile in the paper has great significance.