A two-dimensional(2-D) finite element(FE) model was developed to analyze the deformation and stress of embankment on soft ground due to widening with different treatment techniques.It is found that the embankment wide...A two-dimensional(2-D) finite element(FE) model was developed to analyze the deformation and stress of embankment on soft ground due to widening with different treatment techniques.It is found that the embankment widening induces transverse gradient change due to differential settlements and horizontal outward movements at the shoulder of the existing embankment.Embankment widening also increases the shear stress along the slope of the existing embankment,especially at the foot of slope.The failure potential due to embankment widening may increase with the increase of widening width when the widening width is smaller than 8.5 m,but may decrease with the increase of widening width as the widening width is greater than 8.5 m.The effectiveness of four ground and embankment treatment techniques,including geosynthetic reinforcement,light-weight embankment,deep mixed columns,and separating wall were compared.The results indicate that these treatments reduce the differential settlements and improve the stability.The light-weight embankment has the most effectiveness among four treatments.By using the fly-ash backfill material in widening,the transverse gradient change decreases from 0.5%-1.3% to 0.26%-0.8% and the maximum horizontal displacement decreases from 2.76 cm to 1.44 cm.展开更多
The objective of this work is to compare the responses of geosynthetically-reinforced embankment and unreinforced embankment due to road widening by using the centrifuge model tests and a two-dimensional(2D) finite el...The objective of this work is to compare the responses of geosynthetically-reinforced embankment and unreinforced embankment due to road widening by using the centrifuge model tests and a two-dimensional(2D) finite element(FE) model. The measured and calculated responses of the embankment and foundation exposed to road widening include the settlement,horizontal displacement,pore water pressure,and shear stresses. It is found that the road widening changed the transverse slope of the original pavement surface resulting from the nonuniform settlements. The maximum horizontal movement is found to be located at the shoulder of the original embankment. Although the difference is small,it is clearly seen that the geosynthetic reinforcement reduces the nonuniform settlements and horizontal movements due to road widening. Thus the reinforcement reduces the potential of pavement cracking and increases the stability of the embankment on soft ground in road widening.展开更多
文摘A two-dimensional(2-D) finite element(FE) model was developed to analyze the deformation and stress of embankment on soft ground due to widening with different treatment techniques.It is found that the embankment widening induces transverse gradient change due to differential settlements and horizontal outward movements at the shoulder of the existing embankment.Embankment widening also increases the shear stress along the slope of the existing embankment,especially at the foot of slope.The failure potential due to embankment widening may increase with the increase of widening width when the widening width is smaller than 8.5 m,but may decrease with the increase of widening width as the widening width is greater than 8.5 m.The effectiveness of four ground and embankment treatment techniques,including geosynthetic reinforcement,light-weight embankment,deep mixed columns,and separating wall were compared.The results indicate that these treatments reduce the differential settlements and improve the stability.The light-weight embankment has the most effectiveness among four treatments.By using the fly-ash backfill material in widening,the transverse gradient change decreases from 0.5%-1.3% to 0.26%-0.8% and the maximum horizontal displacement decreases from 2.76 cm to 1.44 cm.
基金Project(200231800032) supported by Research on Transportation Construction in Western, China
文摘The objective of this work is to compare the responses of geosynthetically-reinforced embankment and unreinforced embankment due to road widening by using the centrifuge model tests and a two-dimensional(2D) finite element(FE) model. The measured and calculated responses of the embankment and foundation exposed to road widening include the settlement,horizontal displacement,pore water pressure,and shear stresses. It is found that the road widening changed the transverse slope of the original pavement surface resulting from the nonuniform settlements. The maximum horizontal movement is found to be located at the shoulder of the original embankment. Although the difference is small,it is clearly seen that the geosynthetic reinforcement reduces the nonuniform settlements and horizontal movements due to road widening. Thus the reinforcement reduces the potential of pavement cracking and increases the stability of the embankment on soft ground in road widening.