Nanostructured MnO2/CNT composite was synthesized by a soft template approach in the presence of Pluronic P123 surfactant. The product was characterized by X-ray diffraction, thermogravimetric and differential thermal...Nanostructured MnO2/CNT composite was synthesized by a soft template approach in the presence of Pluronic P123 surfactant. The product was characterized by X-ray diffraction, thermogravimetric and differential thermal analyses, Fourier transformed infrared spectroscopy and high-resolution transmission electron microscopy. The results show that the sample consists of poor crystalline α-MnO2 nanorods with a diameter of about 10 nm and a length of 30-50 nm, which absorb on the carbon nanotubes. The electrochemical properties of the product as cathode material for Li-MnO2 cell are evaluated by galvanostatic charge-discharge and electrochemical impedance spectroscopy (EIS). Compared with pure MnO2 electrode, the MnO2/CNT composite delivers a much larger initial capacity of 275.3 mA-h/g and better rate and cycling performance.展开更多
A similar material model and a numerical simulation were constructed and are described herein. The deformation and failure of surrounding rock of broken and soft roadway are studied by using these models. The deformat...A similar material model and a numerical simulation were constructed and are described herein. The deformation and failure of surrounding rock of broken and soft roadway are studied by using these models. The deformation of the roof and floor, the relative deformation of the two sides and the deformation of the deep surrounding rock are predicted using the model. Measurements in a working mine are compared to the results of the models. The results show that the surrounding rock shows clear theological features under high stress conditions. Deformation is unequally distributed across the whole section. The surrounding rock exhibited three deformation stages: displacement caused by stress concentration, theological displacement after the digging effects had stabilized and displacement caused by supporting pressure of the roadway. Floor heave was serious, accounting for 65% of the total deformation of the roof and floor. Floor heave is the main reason for failure of the surrounding rock. The reasons for deformation of the surrounding rock are discussed based on the similar material and numerical simulations.展开更多
An expansion theory of spherical cavities in strain-softening materials with different moduli of tension and com-pression was presented. For geomaterials,two controlling parameters were introduced to take into account...An expansion theory of spherical cavities in strain-softening materials with different moduli of tension and com-pression was presented. For geomaterials,two controlling parameters were introduced to take into account the different moduli and strain-softening properties. By means of elastic theory with different moduli and stress-softening models,general solutions cal-culating Tresca and Mohr-Coulomb materials' stress and displacement fields of expansion of spherical cavity were derived. The effects caused by different elastic moduli in tensile and compression and strain-softening rates on stress and displacement fields and development of plastic zone of expansion of cavity were analyzed. The results show that the ultimate expansion pressure,stress and displacement fields and development of plastic zone vary with the different elastic moduli and strain-softening prop-erties. If classical elastic theory is adopted and strain-softening properties are neglected,rather large errors may be the result.展开更多
Modeling pavement granular materials have played through an experimental or numerical approach to predict the a significant role in pavement design procedure. Modeling can be granular behavior during cyclic loading. C...Modeling pavement granular materials have played through an experimental or numerical approach to predict the a significant role in pavement design procedure. Modeling can be granular behavior during cyclic loading. Current design process in western Australia is based on linear elastic analysis of layers. The analysis is largely performed through a well-known program CIRCLY which is applied to model bound pavement material behavior. The KENLAYER is one of the common pavement software models used for pavement design in the United State which performs non-linear analysis for granular materials. Alternatively, a general finite element program such as ABAQUS can be used to model the complicated behavior ofmultilayer granular materials. This study is to compare results of numerical modeling with these three programs on a sample constructed pavement model. Moreover, a parametric study on the effects of Poisson ratio over the surface deflection of the flexible pavement has been conducted. It is found that increase in Poisson ratio of asphalt layer will increase the surface deflection while the increase in Poisson ratio of granular layers decreases the surface deflection.展开更多
Modelling and simulation has become an important tool in research and development. Simulation models are used to develop better understanding of the internal properties and impact of various parameters on the final qu...Modelling and simulation has become an important tool in research and development. Simulation models are used to develop better understanding of the internal properties and impact of various parameters on the final quality of the product or process. Simulation model reduces the number of experiments and saves the wastage of material, time and money and are widely used in automobile industry, aircrafts manufacturing, process engineering, training for military, health care sector and many more. Wood Plastic Composite (WPC) is a bio-composite made by mixing wood fibers and plastic granules together at high temperature by compression molding or injection molding. A large quantity of WPC is rejected due to poor quality and low mechanical strength. There is a need to improve the understanding of the wood plastic composites, with both theoretical and experimental analysis. The impact of various parameters and processing conditions on the final product is not known to the industry people, due to less simulation models in this field. A new simulation software WPC Soft is developed to predict the mechanical and thermal properties of WPC. The software can predict the mechanical and thermal properties of WPC. The simulation results were validated with the experimental results and it was observed that the predicted values are quite close to the experimental values and with the further refining of the model, prediction can be further improved. The present simulation software can be easily used by the industry people and it requires very little knowledge of computers or modeling for its operation.展开更多
In order to investigate the effect of microvoids on the mechanical behavior of casting magnesium alloy,a spherical void-cell model of the material was presented.The velocity and strain fields of the model were obtaine...In order to investigate the effect of microvoids on the mechanical behavior of casting magnesium alloy,a spherical void-cell model of the material was presented.The velocity and strain fields of the model were obtained from the assumption that the material matrix is homogeneous and incompressible.The hardening and softening functions,which respectively reflect the deformation-hardening and void-softening behaviors of the material,were presented and introduced to an endochronic constitutive equation for describing the mechanical behavior of the material including microvoids.The corresponding numerical algorithm and finite element procedure were developed and applied to the analyses of the elastoplastic response and the porosity of casting magnesium alloy ZL102.The computed results show satisfactory agreement with experimental data.展开更多
A numerical approach for simulating the seismic performance of steel truss structures, considering damage-induced material softening, is developed based on a ductile damage constitutive model by applying the backward ...A numerical approach for simulating the seismic performance of steel truss structures, considering damage-induced material softening, is developed based on a ductile damage constitutive model by applying the backward Euler explicit algorithm. It is implemented in ABAQUS through a user-defined material subroutine, by which damage evolution could be incorporated into the analysis of seismic performance of steel structures. The case study taken up here is the investigation of a steel connection with a reduced beam section(RBS) and a steel frame with such connections. The material softening effect during the failure process is particularly investigated. The results show that material softening in the vulnerable zone has a significant effect on the distribution of stress and strain fields, as well as on the carrying capacity of the steel connection with RBS. Further, material softening is found to have almost negligible effect on the seismic performance of the steel frame in the early stages of the loading process, but has a large effect when the steel frame is about to fail. These findings offer a practical reference for the assessment of seismic structural failure, and help in understanding the damage mechanism of steel structures under seismic loading.展开更多
Understanding the mechanisms of hard–soft material interaction under impact loading is important not only in the defense industry but also in daily life.However,traditional mesh-based spatial discretization methods t...Understanding the mechanisms of hard–soft material interaction under impact loading is important not only in the defense industry but also in daily life.However,traditional mesh-based spatial discretization methods that are time consuming owing to the need for frequent re-meshing,such as the finite element method and finite difference method,can hardly handle large deformation involving failure evolution in a multi-phase interaction environment.The objective of this research is to develop a quasi-meshless particle method based on the material point method for the model-based simulation of the hard–soft material interaction response.To demonstrate the proposed procedure,scenarios of a hard–soft material impact test are considered,where a force is applied to layers of materials and a hard bar with an initial velocity impacts a target with layers of different materials.The stress wave propagation and resulting failure evolution are simulated and compared with available data.Future research tasks are then discussed on the basis of the preliminary results.展开更多
基金Projects(21071153,20976198)supported by the National Natural Science Foundation of China
文摘Nanostructured MnO2/CNT composite was synthesized by a soft template approach in the presence of Pluronic P123 surfactant. The product was characterized by X-ray diffraction, thermogravimetric and differential thermal analyses, Fourier transformed infrared spectroscopy and high-resolution transmission electron microscopy. The results show that the sample consists of poor crystalline α-MnO2 nanorods with a diameter of about 10 nm and a length of 30-50 nm, which absorb on the carbon nanotubes. The electrochemical properties of the product as cathode material for Li-MnO2 cell are evaluated by galvanostatic charge-discharge and electrochemical impedance spectroscopy (EIS). Compared with pure MnO2 electrode, the MnO2/CNT composite delivers a much larger initial capacity of 275.3 mA-h/g and better rate and cycling performance.
基金Project 40773040 supported by the National Basic Research Program of China
文摘A similar material model and a numerical simulation were constructed and are described herein. The deformation and failure of surrounding rock of broken and soft roadway are studied by using these models. The deformation of the roof and floor, the relative deformation of the two sides and the deformation of the deep surrounding rock are predicted using the model. Measurements in a working mine are compared to the results of the models. The results show that the surrounding rock shows clear theological features under high stress conditions. Deformation is unequally distributed across the whole section. The surrounding rock exhibited three deformation stages: displacement caused by stress concentration, theological displacement after the digging effects had stabilized and displacement caused by supporting pressure of the roadway. Floor heave was serious, accounting for 65% of the total deformation of the roof and floor. Floor heave is the main reason for failure of the surrounding rock. The reasons for deformation of the surrounding rock are discussed based on the similar material and numerical simulations.
基金Project supported by the National Postdoctoral Science Foundation of China (No.20060400317)the Education Foundation of Zhejiang Province (No.20061459)the Young Foundation of Zhejiang Province (No.0202303005),China
文摘An expansion theory of spherical cavities in strain-softening materials with different moduli of tension and com-pression was presented. For geomaterials,two controlling parameters were introduced to take into account the different moduli and strain-softening properties. By means of elastic theory with different moduli and stress-softening models,general solutions cal-culating Tresca and Mohr-Coulomb materials' stress and displacement fields of expansion of spherical cavity were derived. The effects caused by different elastic moduli in tensile and compression and strain-softening rates on stress and displacement fields and development of plastic zone of expansion of cavity were analyzed. The results show that the ultimate expansion pressure,stress and displacement fields and development of plastic zone vary with the different elastic moduli and strain-softening prop-erties. If classical elastic theory is adopted and strain-softening properties are neglected,rather large errors may be the result.
文摘Modeling pavement granular materials have played through an experimental or numerical approach to predict the a significant role in pavement design procedure. Modeling can be granular behavior during cyclic loading. Current design process in western Australia is based on linear elastic analysis of layers. The analysis is largely performed through a well-known program CIRCLY which is applied to model bound pavement material behavior. The KENLAYER is one of the common pavement software models used for pavement design in the United State which performs non-linear analysis for granular materials. Alternatively, a general finite element program such as ABAQUS can be used to model the complicated behavior ofmultilayer granular materials. This study is to compare results of numerical modeling with these three programs on a sample constructed pavement model. Moreover, a parametric study on the effects of Poisson ratio over the surface deflection of the flexible pavement has been conducted. It is found that increase in Poisson ratio of asphalt layer will increase the surface deflection while the increase in Poisson ratio of granular layers decreases the surface deflection.
文摘Modelling and simulation has become an important tool in research and development. Simulation models are used to develop better understanding of the internal properties and impact of various parameters on the final quality of the product or process. Simulation model reduces the number of experiments and saves the wastage of material, time and money and are widely used in automobile industry, aircrafts manufacturing, process engineering, training for military, health care sector and many more. Wood Plastic Composite (WPC) is a bio-composite made by mixing wood fibers and plastic granules together at high temperature by compression molding or injection molding. A large quantity of WPC is rejected due to poor quality and low mechanical strength. There is a need to improve the understanding of the wood plastic composites, with both theoretical and experimental analysis. The impact of various parameters and processing conditions on the final product is not known to the industry people, due to less simulation models in this field. A new simulation software WPC Soft is developed to predict the mechanical and thermal properties of WPC. The software can predict the mechanical and thermal properties of WPC. The simulation results were validated with the experimental results and it was observed that the predicted values are quite close to the experimental values and with the further refining of the model, prediction can be further improved. The present simulation software can be easily used by the industry people and it requires very little knowledge of computers or modeling for its operation.
基金Project(10872221)supported by the National Natural Science Foundation of China
文摘In order to investigate the effect of microvoids on the mechanical behavior of casting magnesium alloy,a spherical void-cell model of the material was presented.The velocity and strain fields of the model were obtained from the assumption that the material matrix is homogeneous and incompressible.The hardening and softening functions,which respectively reflect the deformation-hardening and void-softening behaviors of the material,were presented and introduced to an endochronic constitutive equation for describing the mechanical behavior of the material including microvoids.The corresponding numerical algorithm and finite element procedure were developed and applied to the analyses of the elastoplastic response and the porosity of casting magnesium alloy ZL102.The computed results show satisfactory agreement with experimental data.
文摘A numerical approach for simulating the seismic performance of steel truss structures, considering damage-induced material softening, is developed based on a ductile damage constitutive model by applying the backward Euler explicit algorithm. It is implemented in ABAQUS through a user-defined material subroutine, by which damage evolution could be incorporated into the analysis of seismic performance of steel structures. The case study taken up here is the investigation of a steel connection with a reduced beam section(RBS) and a steel frame with such connections. The material softening effect during the failure process is particularly investigated. The results show that material softening in the vulnerable zone has a significant effect on the distribution of stress and strain fields, as well as on the carrying capacity of the steel connection with RBS. Further, material softening is found to have almost negligible effect on the seismic performance of the steel frame in the early stages of the loading process, but has a large effect when the steel frame is about to fail. These findings offer a practical reference for the assessment of seismic structural failure, and help in understanding the damage mechanism of steel structures under seismic loading.
基金The National Natural Science Foundation of China(Grant Nos.51476150,11102185 and 11232003)U.S.Defense Threat Reduction Agency(Grant No.HDTRA1-10-1-0022)+1 种基金International Joint Research Program of Shanxi Province,China(Grant No.2014081028)Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi
文摘Understanding the mechanisms of hard–soft material interaction under impact loading is important not only in the defense industry but also in daily life.However,traditional mesh-based spatial discretization methods that are time consuming owing to the need for frequent re-meshing,such as the finite element method and finite difference method,can hardly handle large deformation involving failure evolution in a multi-phase interaction environment.The objective of this research is to develop a quasi-meshless particle method based on the material point method for the model-based simulation of the hard–soft material interaction response.To demonstrate the proposed procedure,scenarios of a hard–soft material impact test are considered,where a force is applied to layers of materials and a hard bar with an initial velocity impacts a target with layers of different materials.The stress wave propagation and resulting failure evolution are simulated and compared with available data.Future research tasks are then discussed on the basis of the preliminary results.