期刊文献+
共找到36篇文章
< 1 2 >
每页显示 20 50 100
基于软注意力GRU模型的堆芯瞬态热工水力参数预测方法研究 被引量:1
1
作者 淳思琦 冯欢 +1 位作者 张安妮 赵鹏程 《核技术》 EI CAS CSCD 北大核心 2024年第1期124-132,共9页
反应堆在各种工况下堆芯瞬态热工水力参数预测的准确性,直接影响到反应堆的安全性。质量流量和温度作为堆芯热工水力的重要参数,二者常被建模为时间序列预测问题。研究旨在解决瞬时条件下堆芯热工水力参数连续预测的精度问题,检验基于... 反应堆在各种工况下堆芯瞬态热工水力参数预测的准确性,直接影响到反应堆的安全性。质量流量和温度作为堆芯热工水力的重要参数,二者常被建模为时间序列预测问题。研究旨在解决瞬时条件下堆芯热工水力参数连续预测的精度问题,检验基于注意力机制的门控循环单元在核心参数预测中的可行性。本文采用1/2中国实验快堆(China Experimental Fast Reactor,CEFR)为研究对象,使用快堆子通道程序SUBCHANFLOW生成瞬态堆芯热工水力参数的时间序列,采用基于软注意力的门控循环单元(Gated Recurrent Unit,GRU)模型预测堆芯的质量流量和温度时间序列。结果表明:相较于自适应径向基(Radial Basis Function,RBF)神经网络,本文使用的软注意力的GRU网络模型预测结果更好,温度在步长为3的情况下平均相对误差不超过0.5%,在15 s内预测效果较好;质量流量在步长为10的情况下平均相对误差不超过5%,且在后续12 s内预测效果较好。本文构建的模型不仅在连续预测过程中表现出更高的预测精度,且能捕捉到动态时间序列中的趋势特点,这对维护反应堆安全,有效防止核电厂事故有极大的用处。基于软注意力的GRU模型能在瞬态反应堆工况下提供一段时间的连续预测,在工程应用中和提高反应堆安全性上具有一定的参考价值。 展开更多
关键词 门控循环单元 注意力 快堆 瞬态热工水力 参数预测
下载PDF
基于可变形卷积AlexNet与软注意力机制的皮肤病变识别算法
2
作者 曹迅 冯艳玲 +1 位作者 马昭鹏 胡铭铭 《计算机科学与应用》 2024年第5期229-238,共10页
为解决皮肤病识别领域中数据集类别不平衡、模型复杂度高以及准确率低的问题,提出了一种基于可变形卷积AlexNet与软注意力机制的皮肤病变识别算法。首先,提出改进的可变形卷积AlexNet网络模型,提高模型辨析力的同时,降低了模型的参数量... 为解决皮肤病识别领域中数据集类别不平衡、模型复杂度高以及准确率低的问题,提出了一种基于可变形卷积AlexNet与软注意力机制的皮肤病变识别算法。首先,提出改进的可变形卷积AlexNet网络模型,提高模型辨析力的同时,降低了模型的参数量,加快模型的训练和测试效率。然后,在改进的模型中集成了软注意力机制,使模型聚焦于皮肤病的关键特征区域,优化模型的特征提取和识别能力。最后,提出了一种联合损失函数,对焦点损失函数与交叉熵损失函数进行加权,聚焦于困难样本和易出错样本,解决因数据集类别不平衡而导致的网络朝着错误方向收敛的问题。在公开数据集进行实验,主观和客观的实验结果表明,提出算法在七种不同类别的皮肤病识别准确率高于对比算法,具有较强的鲁棒性和泛化能力。 展开更多
关键词 皮肤病识别 可变形卷积AlexNet 注意力机制 联合损失函数
下载PDF
基于多头软注意力图卷积网络的行人轨迹预测
3
作者 彭涛 康亚龙 +5 位作者 余锋 张自力 刘军平 胡新荣 何儒汉 李丽 《计算机应用》 CSCD 北大核心 2023年第3期736-743,共8页
行人间交互作用的复杂性给行人轨迹预测带来了挑战,且现有算法难以捕获行人间有意义的交互信息,不能直观地建模行人间的交互作用。针对以上问题,提出多头软注意力图卷积网络。首先利用多头软注意力(MS ATT)结合内卷网络Involution分别... 行人间交互作用的复杂性给行人轨迹预测带来了挑战,且现有算法难以捕获行人间有意义的交互信息,不能直观地建模行人间的交互作用。针对以上问题,提出多头软注意力图卷积网络。首先利用多头软注意力(MS ATT)结合内卷网络Involution分别从空间图和时间图输入中提取稀疏空间和稀疏时间邻接矩阵,生成稀疏空间和稀疏时间有向图;然后,利用图卷积网络(GCN)从稀疏空间和稀疏时间有向图中学习交互作用与运动趋势特征;最后,将学习到的轨迹特征输入时间卷积网络(TCN)以预测双高斯分布参数,生成行人预测轨迹。在ETH和UCY数据集上的实验结果表明:相较于空时社交关系池化行人轨迹预测模型(SOPM),所提算法的平均位移误差(ADE)降低了2.78%;相较于稀疏图卷积网络(SGCN),所提算法的最终位移误差(FDE)降低了16.92%。 展开更多
关键词 多头注意力 通道注意力 空间注意力 内卷 图卷积网络 行人轨迹预测
下载PDF
基于自注意力和位置感知图模型的会话推荐
4
作者 孙克雷 周志刚 《计算机工程与设计》 北大核心 2023年第12期3722-3728,共7页
为解决现有的会话模型方案都只基于局部会话信息而没有充分考虑全局会话信息的问题,提出一种基于自注意力和位置感知图模型的会话推荐。利用图神经网络构建会话图,利用位置感知注意力建模会话图的一阶邻居信息,引入反向位置嵌入赋予不... 为解决现有的会话模型方案都只基于局部会话信息而没有充分考虑全局会话信息的问题,提出一种基于自注意力和位置感知图模型的会话推荐。利用图神经网络构建会话图,利用位置感知注意力建模会话图的一阶邻居信息,引入反向位置嵌入赋予不同项目不同的权重,通过软注意机制获得局部会话表示;利用自注意力机制自适应地捕捉会话的全局依赖;将全局会话与局部会话相结合生成最终会话表示。对3个真实数据集进行实验,模型在3个数据集上P@20分别提升了1.2%、4.3%和12.9%,MRR@20分别提升了2.3%、5.4%和14.3%,验证了所提模型的有效性。 展开更多
关键词 会话推荐 图神经网络 注意力机制 反向位置嵌入 注意力机制 邻居信息 位置感知图模型
下载PDF
基于注意力机制上下文建模的弱监督动作定位
5
作者 党伟超 王飞 +1 位作者 高改梅 刘春霞 《软件导刊》 2023年第12期78-83,共6页
弱监督动作定位仅利用视频级标签信息检测动作实例的类别和时间边界,由于缺乏帧级分类标签,部分特征不明显的动作帧难以识别,且容易混淆动作帧和上下文帧。针对这两个问题,提出一种基于注意力机制上下文建模的弱监督动作定位方法。该方... 弱监督动作定位仅利用视频级标签信息检测动作实例的类别和时间边界,由于缺乏帧级分类标签,部分特征不明显的动作帧难以识别,且容易混淆动作帧和上下文帧。针对这两个问题,提出一种基于注意力机制上下文建模的弱监督动作定位方法。该方法在动作—背景注意力的基础上加入半软注意力,引导模型关注动作特征不明显的视频帧;通过上下文注意力对视频上下文信息建模,使模型可以区分动作帧和上下文帧。实验结果表明,所提方法的动作定位效果较好,当交并比(IoU)为0.5时,在公共数据集THUMOS14和ActivityNet1.3上的平均检测精度(mAP)分别达到32.6%和38.6%,优于现有弱监督动作定位模型。 展开更多
关键词 弱监督 动作定位 注意力机制 注意力 上下文建模
下载PDF
融合两级注意力的多机器人强化学习导航
6
作者 张耀丹 况立群 +2 位作者 焦世超 韩慧妍 薛红新 《计算机系统应用》 2023年第12期43-51,共9页
针对多智能体强化学习中因智能体之间的复杂关系所导致的学习效率低及收敛速度慢的问题,提出基于两级注意力机制的方法MADDPG-Attention,在MADDPG算法的Critic网络中增加了软硬两级注意力机制,通过注意力机制学习智能体之间的可借鉴经验... 针对多智能体强化学习中因智能体之间的复杂关系所导致的学习效率低及收敛速度慢的问题,提出基于两级注意力机制的方法MADDPG-Attention,在MADDPG算法的Critic网络中增加了软硬两级注意力机制,通过注意力机制学习智能体之间的可借鉴经验,提升智能体之间的相互学习效率.由于单层的软注意力机制会给完全不相关的智能体也赋予学习权重,因此采用硬注意力判断两个智能体之间学习的必要性,裁减无关信息的智能体,再用软注意力判断两个智能体间学习的重要性,按重要性分布来分配学习权重,据此向有可用经验的智能体学习.在多智能体粒子的合作导航环境上进行测试,实验结果表明,MADDPG-Attention算法对复杂关系的理解更为清晰,在3种环境的导航成功率都达到了90%以上,有效提高了学习效率,加快了收敛速度. 展开更多
关键词 多智能体强化学习 导航 MADDPG 注意力 注意力
下载PDF
面向会话推荐的注意力图神经网络
7
作者 陈瑶 熊棋 郭一娜 《小型微型计算机系统》 CSCD 北大核心 2023年第2期307-312,共6页
面向会话的推荐方式起源于无法获得用户历史数据的应用场景,它是通过匿名会话来预测用户的行为.现有面向会话的推荐方法,虽然可以准确获得项目嵌入和考虑项目的复杂转换,但不能从多维度提取会话序列中隐藏的用户的长期兴趣和短期偏好,... 面向会话的推荐方式起源于无法获得用户历史数据的应用场景,它是通过匿名会话来预测用户的行为.现有面向会话的推荐方法,虽然可以准确获得项目嵌入和考虑项目的复杂转换,但不能从多维度提取会话序列中隐藏的用户的长期兴趣和短期偏好,造成推荐性能低.该文引入注意力机制,提出一种多头注意力机制和软注意力机制有机结合的新机制,并据此提出面向会话推荐的注意力图神经网络.该注意力机制通过给不同的输入数据赋予不同权重,实现对当前推荐任务更为关键的信息的聚焦,以此从不同角度提取用户的兴趣和偏好.该模型在电商数据集上进行实验,与已有的基准模型相比,该文所提模型在各项评论指标上均有显著提升.在Dgeca数据集上,P@20可达61.77%,充分表明了所提方法的有效性. 展开更多
关键词 会话推荐 图神经网络 位置编码 注意力机制 多头注意力机制
下载PDF
基于联结扩张注意网络的图像去摩尔纹算法
8
作者 孙光灵 卢慧敏 +2 位作者 陈冲 黄磊 苏亮亮 《安庆师范大学学报(自然科学版)》 2024年第2期52-57,共6页
针对相机拍摄数字显示屏时图像产生的摩尔纹,本文提出了基于联结扩张注意网络的图像去摩尔纹算法。该算法先以轻量级基线U-Net网络为基础,将改进的动态特征金字塔模块DFP引入U-Net的跳跃连接中,并构成联结结构,实现多尺度特征提取与融合... 针对相机拍摄数字显示屏时图像产生的摩尔纹,本文提出了基于联结扩张注意网络的图像去摩尔纹算法。该算法先以轻量级基线U-Net网络为基础,将改进的动态特征金字塔模块DFP引入U-Net的跳跃连接中,并构成联结结构,实现多尺度特征提取与融合,再利用CBAM改进的软注意力机制RMAM来聚焦摩尔纹图像颜色信息,最后构建网络模型对其进行了训练及测试。结果表明,相较于其他算法,该算法具有较高的峰值信噪比和结构相似度。 展开更多
关键词 图像处理 图像去摩尔纹 U-Net网络 多尺度 注意力机制
下载PDF
深度学习中注意力机制研究进展 被引量:38
9
作者 刘建伟 刘俊文 罗雄麟 《工程科学学报》 EI CSCD 北大核心 2021年第11期1499-1511,共13页
对注意力机制的主流模型进行了全面系统的概述.注意力机制模拟人类视觉选择性的机制,其核心的目的是从冗杂的信息中选择出对当前任务目标关联性更大、更关键的信息而过滤噪声,也就是高效率信息选择和关注机制.首先简要介绍和定义了注意... 对注意力机制的主流模型进行了全面系统的概述.注意力机制模拟人类视觉选择性的机制,其核心的目的是从冗杂的信息中选择出对当前任务目标关联性更大、更关键的信息而过滤噪声,也就是高效率信息选择和关注机制.首先简要介绍和定义了注意力机制的原型,接着按照多个层面对各种注意力机制结构进行分类,然后对注意力机制的可解释性进行了阐述同时总结了在各种领域的应用,最后指出了注意力机制未来的发展方向以及会面临的挑战. 展开更多
关键词 注意力机制 全局/局部注意力机制 硬/注意力机制 注意力机制 可解释性
下载PDF
基于注意力的毫米波雷达与视觉融合方法 被引量:2
10
作者 杨猛 沈韬 曾凯 《通信技术》 2021年第7期1627-1633,共7页
针对毫米波雷达与视觉传感器融合在数据层融合时对行人和小物体的检测效果不佳,以及特征层融合时权重难以分配的问题,提出一种基于注意力的融合方法,能够有效地解决以上两个问题。首先,在数据层的空间上利用雷达的空间信息确定重点检测... 针对毫米波雷达与视觉传感器融合在数据层融合时对行人和小物体的检测效果不佳,以及特征层融合时权重难以分配的问题,提出一种基于注意力的融合方法,能够有效地解决以上两个问题。首先,在数据层的空间上利用雷达的空间信息确定重点检测区域,并且突出重点检测区域的特征,形成空间上的软注意力;其次,在特征层的通道上用通道注意力权重学习方法,对融合特征权重进行分配。通过在晴天、雨天和夜间等多种光照环境下进行实验,表明该融合方法能够有效地提高检测精度和召回率。 展开更多
关键词 毫米波雷达 视觉 空间注意力 通道注意力权重学习 障碍物检测
下载PDF
融合软注意力掩码嵌入的场景文本识别方法
11
作者 陈威达 王林飞 陶大鹏 《中国图象图形学报》 CSCD 北大核心 2024年第5期1381-1391,共11页
目的 基于深度学习的端到端场景文本识别任务已经取得了很大的进展。然而受限于多尺度、任意形状以及背景干扰等问题,大多数端到端文本识别器依然会面临掩码提议不完整的问题,进而影响模型的文本识别结果。为了提高掩码预测的准确率,提... 目的 基于深度学习的端到端场景文本识别任务已经取得了很大的进展。然而受限于多尺度、任意形状以及背景干扰等问题,大多数端到端文本识别器依然会面临掩码提议不完整的问题,进而影响模型的文本识别结果。为了提高掩码预测的准确率,提出了一种基于软注意力的掩码嵌入模块(soft attention mask embedding,SAME),方法 利用Transformer更好的全局感受野,将高层特征进行编码并计算软注意力,然后将编码特征与预测掩码层级嵌入,生成更贴近文本边界的掩码来抑制背景噪声。基于SAME强大的文本掩码优化及细粒度文本特征提取能力,进一步提出了一个健壮的文本识别框架SAME-Net,开展无需字符级注释的端到端精准文本识别。具体来说,由于软注意力是可微的,所提出的SAME-Net可以将识别损失传播回检测分支,以通过学习注意力的权重来指导文本检测,使检测分支可以由检测和识别目标联合优化。结果 在多个文本识别公开数据集上的实验表明了所提方法的有效性。其中,SAME-Net在任意形状文本数据集Total-Text上实现了84.02%的H-mean,相比于2022年的GLASS(global to local attention for scene-text spotting),在不增加额外训练数据的情况下,全词典的识别准确率提升1.02%。所提方法在多向数据集ICDAR 2015(International Conference on Document Analysis and Recognition)也获得了与同期工作相当的性能,取得83.4%的强词典识别结果。结论 提出了一种基于SAME的端到端文本识别方法。该方法利用Transformer的全局感受野生成靠近文本边界的掩码来抑制背景噪声,提出的SAME模块可以将识别损失反向传输到检测模块,并且不需要额外的文本校正模块。通过检测和识别模块的联合优化,可以在没有字符级标注的情况下实现出色的文本定位性能。 展开更多
关键词 自然场景文本检测 自然场景文本识别 注意力嵌入 深度学习 端到端自然场景文本检测与识别
原文传递
基于可分解注意力机制的医疗问句语义匹配研究 被引量:1
12
作者 陈云 刘卫光 《中原工学院学报》 CAS 2020年第1期74-79,共6页
问句语义匹配旨在判定给定的两个语句的语义信息是否匹配,在信息检索、自动问答、机器翻译等领域应用广泛,是自然语言处理研究的一个关键问题。现有基于机器学习或深度学习的问句语义匹配任务大多采用对整个句子构建语义信息表示,而忽... 问句语义匹配旨在判定给定的两个语句的语义信息是否匹配,在信息检索、自动问答、机器翻译等领域应用广泛,是自然语言处理研究的一个关键问题。现有基于机器学习或深度学习的问句语义匹配任务大多采用对整个句子构建语义信息表示,而忽视了语句各组成部分所蕴含的具体细节信息。提出一种基于可分解注意力机制的语义匹配模型(Decomposable Attention based Semantic Matching,DASM),该模型首先使用软注意力机制将整个序列问句分解为可以独立解决的子问句,使得子问句间权重计算可以并行;然后结合注意力机制充分捕获问句中潜在的语义信息,从而提高问句匹配任务的性能。实验结果表明,本文方法提高了问句语义匹配的准确性和模型性能。 展开更多
关键词 问句语义匹配 可分解注意力机制 注意力机制 自然语言处理
下载PDF
基于ChineseBERT和多特征协同网络的电力设备缺陷文本分类模型 被引量:1
13
作者 李瑛 耿军伟 +1 位作者 赵留学 陈波 《微型电脑应用》 2024年第2期106-109,共4页
针对传统模型特征提取不够全面,词向量语义表达不准确等问题,提出了结合ChineseBERT和多特征协同网络的电力设备缺陷文本分类模型。采用针对汉字优化的ChineseBERT模型提取文本向量表征,提高词向量语义表示的准确性。多特征协同网络全... 针对传统模型特征提取不够全面,词向量语义表达不准确等问题,提出了结合ChineseBERT和多特征协同网络的电力设备缺陷文本分类模型。采用针对汉字优化的ChineseBERT模型提取文本向量表征,提高词向量语义表示的准确性。多特征协同网络全面捕捉缺陷文本局部和上下文语义特征。软注意力机制提升模型聚焦于关键特征的能力。在真实电力设备缺陷文本数据集开展实验,结果表明该模型分类性能优于近期表现较好的深度学习模型,F1分数高达96.82%,证明了模型的有效性。 展开更多
关键词 文本分类 ChineseBERT 多特征协同 注意力
下载PDF
结合ChineseBERT和多特征网络的数学命名实体识别 被引量:1
14
作者 白建侠 《信息技术》 2024年第8期158-162,共5页
针对基础深度学习模型特征提取能力不足,词向量语义表达不准确等问题,提出了结合ChineseBERT和多特征网络的数学命名实体识别模型。ChineseBERT结合当前词的上下文动态调整向量表示,提高词向量语义表示准确性;多特征网络通过改进的卷积... 针对基础深度学习模型特征提取能力不足,词向量语义表达不准确等问题,提出了结合ChineseBERT和多特征网络的数学命名实体识别模型。ChineseBERT结合当前词的上下文动态调整向量表示,提高词向量语义表示准确性;多特征网络通过改进的卷积网络和双向简单循环单元同时捕捉字符局部和全局序列特征,软注意力机制识别出对实体识别影响较大的关键特征,由条件随机场输出识别结果。在真实数学数据集进行实验,结果表明该模型F1分数达到了97.67%,高于近期表现较好的深度学习模型,简单循环单元训练效率更高,证明了模型的有效性。 展开更多
关键词 命名实体识别 ChineseBERT 多特征网络 多尺度卷积 注意力
下载PDF
基于图神经网络的多层信息交互融合算法用于会话推荐
15
作者 杨航 李汪根 +2 位作者 张根生 王志格 开新 《计算机应用》 CSCD 北大核心 2024年第9期2719-2725,共7页
针对当前会话推荐中存在对于当前会话的项目转换信息挖掘不充分且极少利用其他会话信息的问题,提出一种基于图神经网络的多层信息交互融合算法用于会话推荐。基于当前会话,首先,对节点之间的连接关系设计不同的权重聚合邻域节点的信息,... 针对当前会话推荐中存在对于当前会话的项目转换信息挖掘不充分且极少利用其他会话信息的问题,提出一种基于图神经网络的多层信息交互融合算法用于会话推荐。基于当前会话,首先,对节点之间的连接关系设计不同的权重聚合邻域节点的信息,并挖掘当前会话中项目转换的显性信息;其次,通过基于堆叠的残差图注意力网络聚合邻域节点信息,挖掘当前会话中项目转换的隐性信息;最后,通过单门控图神经网络挖掘基于时间戳的会话中存在的序列依赖信息。基于其他会话,通过节点的一阶邻居将整个会话集联系起来,学习全局信息编码,进而融合4个层次的嵌入表示以获得更全面的项目转换信息,同时使用软注意力机制和反向位置嵌入信息对获得的项目转换信息进行更有效的融合。实验结果表明,在Diginetica数据集上,所提模型的精度P@20和平均倒数排名MRR@20较次优模型GCE-GNN(Global Context Enhanced Graph Neural Network)分别提升了0.79%和0.84%;在Tmall数据集上,所提模型的P@20和MRR@20较次优模型HyperS2Rec分别提升了8.23%和7.86%;在Nowplaying数据集上,所提模型的P@20和MRR@20较次优模型HyperS2Rec分别提升了1.33%和7.16%。 展开更多
关键词 会话推荐 残差图注意力网络 门控图神经网络 注意力 反向位置嵌入
下载PDF
基于CNN-BiBASRU-AT的网络异常流量检测模型
16
作者 冷依凌 邹细勇 《微电子学与计算机》 2024年第1期93-99,共7页
针对目前网络异常流量识别准确率不高、基础深度学习模型特征提取能力不足以及循环神经网络训练效率低等问题,提出了基于卷积神经网络(Convolutional Neural Network,CNN)-双向内置注意力简单循环单元(Bidirectional Built in Attention... 针对目前网络异常流量识别准确率不高、基础深度学习模型特征提取能力不足以及循环神经网络训练效率低等问题,提出了基于卷积神经网络(Convolutional Neural Network,CNN)-双向内置注意力简单循环单元(Bidirectional Built in Attention Simple Recurrent Unit,BiBASRU)-AT的网络异常流量检测模型。采用深层一维卷积模块提取流量局部特征表示,对高维度流量特征进行降维且学习到显著分类特征,增强模型的特征表示能力;同时构建内置自注意力简单循环单元(Built in self Attention Simple Recurrent Unit,BASRU)以同时捕捉流量中长距离的时序特征信息和内部特征之间的相互依赖关系,进一步挖掘流量特征内的高维结构信息。软注意力机制识别出对分类结果影响较大的重点特征,赋予关键特征更高权重,避免无关信息对分类结果造成干扰,最后由线性层输出分类概率分布,经Softmax函数归一化后取最大值对应标签作为流量识别结果。在多分类网络异常流量公开标准数据集UNSW-NB15上的实验结果表明,该模型取得了92.81%的F1值,高于实验对比的其他先进深度学习模型的结果,内置自注意力简单循环单元特征捕捉能力和训练效率优于其他传统循环神经网络的结果,证明了模型的可行性和有效性。 展开更多
关键词 网络异常流量检测 一维卷积 内置自注意力 双向简单循环单元 注意力机制
下载PDF
基于多通道融合特征网络的文本情感分析
17
作者 高慧 荀亚玲 王林青 《计算机技术与发展》 2023年第11期175-181,共7页
针对现有文本情感分析基础深度学习模块特征提取不够全面,语义表示不准确及训练效率低等问题,提出了基于多通道融合特征网络的文本情感分析模型。首先,采用针对汉字优化的预训练模型ChineseBERT提取文本的动态词向量表征,解决静态词向... 针对现有文本情感分析基础深度学习模块特征提取不够全面,语义表示不准确及训练效率低等问题,提出了基于多通道融合特征网络的文本情感分析模型。首先,采用针对汉字优化的预训练模型ChineseBERT提取文本的动态词向量表征,解决静态词向量存在的无法表示多义词问题,提升词向量语义表征质量;然后,通过多通道融合特征网络全面捕捉文本不同尺度下的语义特征融合向量表示,增强模型对文本深层次情感特征的学习能力;并利用软注意力机制计算每个特征对情感极性类型识别的影响权重,赋予关键特征更高权重,避免无关特征对结果造成干扰;最后,由线性层输出文本情感分类结果。在SMP2020微博疫情相关情绪分类评测数据集、购物评论数据集和酒店评论数据集上进行实验验证,分别取得了76.59%、97.59%和95.72%的F1分数以及76.6%、97.59%和95.73%的准确率,高于近期表现优秀的对比深度学习模型,验证了该模型在文本情感分析任务上的有效性。 展开更多
关键词 情感分析 ChineseBERT 多通道融合特征 内置注意力简单循环单元 软注意力。
下载PDF
结合MacBERT与多层次特征协同网络的音乐社交评论情感分析模型
18
作者 兰庆炜 樊宁 《电子设计工程》 2023年第7期36-41,共6页
为更好地解决传统模型特征捕捉能力不足,词向量语义表示不准确等问题,提出了结合MacBERT与多层次特征协同网络的音乐社交评论情感分析模型MacBERT-MFCN(MacBERT and Multi-level Feature Collaborative Network)。采用MacBERT模型提取... 为更好地解决传统模型特征捕捉能力不足,词向量语义表示不准确等问题,提出了结合MacBERT与多层次特征协同网络的音乐社交评论情感分析模型MacBERT-MFCN(MacBERT and Multi-level Feature Collaborative Network)。采用MacBERT模型提取评论文本特征向量,解决静态词向量无法表示多义词的问题;多层次特征协同网络结合双向内置注意力简单循环单元(Bidirectional Built in Attention Simple Recurrent Unit,BiBASRU)和多层次卷积神经网络(Multilevel Convolutional Neural Network,MCNN)模块,全面捕捉局部和上下文语义特征;软注意力用来衡量分类特征贡献的大小,赋予关键特征更高权重。基于网易云评论文本数据集进行实验,结果表明,MacBERTMFCN模型F1值高达95.56%,能有效地提升文本情感分类准确率。 展开更多
关键词 情感分析 MacBERT 多层次特征协同网络 SRU 注意力
下载PDF
基于深度学习的网站类型识别研究
19
作者 尹杰 倪鹏锐 《电子设计工程》 2023年第21期42-46,共5页
针对目前基础深度学习模型特征提取能力较弱,静态词向量模型无法表示多义词以及网站类型识别准确率不高等问题,提出了基于ERNIE2.0-MCNN-BiSRU-AT的网站类型识别模型。采用ERNIE2.0通过结合当前词的具体上下文语境学习到动态向量表征,... 针对目前基础深度学习模型特征提取能力较弱,静态词向量模型无法表示多义词以及网站类型识别准确率不高等问题,提出了基于ERNIE2.0-MCNN-BiSRU-AT的网站类型识别模型。采用ERNIE2.0通过结合当前词的具体上下文语境学习到动态向量表征,解决静态词向量存在的一词多义问题;多特征融合网络全面地捕捉多个尺度下的局部语义和上下文序列特征,软注意力机制计算每个特征对网络分类结果的权重得分,以突出关键分类特征。线性分类层输出网站类型识别结果。在真实网站类型数据集上进行实验,相关结果表明,ERNIE2.0-MCNN-BiSRU-AT模型F1值达到了95.67%,高于实验对比的近期表现优秀的深度学习模型,并通过大量消融对比实验验证了各个功能模块的有效性。 展开更多
关键词 网站分类 ERNIE2.0 多特征融合网络 注意力 BiSRU
下载PDF
基于多尺度语义协同网络的高校网络舆论情感分类研究
20
作者 张舜标 《广东农工商职业技术学院学报》 2023年第3期62-67,共6页
针对基础深度学习模型特征提取能力不足,循环网络训练效率低等问题,将高校社交网络平台评论文本数据作为研究对象,提出了基于多尺度语义协同网络的高校网络舆论情感分类模型。预训练模型ALBERT(A Lite BERT)通过结合当前词的具体上下文... 针对基础深度学习模型特征提取能力不足,循环网络训练效率低等问题,将高校社交网络平台评论文本数据作为研究对象,提出了基于多尺度语义协同网络的高校网络舆论情感分类模型。预训练模型ALBERT(A Lite BERT)通过结合当前词的具体上下文动态调整向量表示,提升词向量语义表征质量。多尺度语义协同网络捕捉评论文本不同尺度下的多通道融合情感特征,软注意力机制计算每个特征对情感分类结果的影响权重大小,加权求和后得到情感分类特征表示,线性层输出分布概率并得到具体情感倾向。在真实高校图书馆社交网络平台用户评论数据集进行实验,结果表明该模型F1分数达到了97.46%,优于近期表现优秀的实验对比模型,且通过消融实验证明了各个功能模块的有效性。 展开更多
关键词 情感分析 ALBERT 多尺度语义协同网络 时序卷积网络 注意力
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部