Maximize parallelism and minimize communication overheads are important issues for distributed memory systems. Communication and data redistribution cannot be avoided even when considering global optimization of data ...Maximize parallelism and minimize communication overheads are important issues for distributed memory systems. Communication and data redistribution cannot be avoided even when considering global optimization of data distribution and computation decomposition. A new approach based on loop fusion is presented exploiting pipelining parallelism, thus communication overhead can be hidden and data redistribution can be avoided. This technique exploits pipelining from complex loop structures, which distinguishes itself from traditional pipelining techniques. Ex-periments show that the technique is superior to other optimizations.展开更多
Pulp fiber length characterization is addressed in this article. It is .suggested that the proposed separation index H(L) is a viable index to the fiber fractionation performance for evaluating hydrocyclones. Fracti...Pulp fiber length characterization is addressed in this article. It is .suggested that the proposed separation index H(L) is a viable index to the fiber fractionation performance for evaluating hydrocyclones. Fractionation of softwood (coniferous wood) bleached chemithermomechanical pulp (BCTMP) fiber was carried out with a cylindrical hydrocyclone. Pulp fiber length characteristics in different streams were examined using the fiber quality analyzer (FQA), and the cumulative fiber length fraction, the fiber length fraction density function and the separation index H(L) for different streams were obtained. It is found that H(L) is very useful for characterizing the fiber fractionation performance by indicating the separation capacity of hydrocyclone for individual subgroup of fibers in different streams under different operation conditions. Results of H(L) show that there exists a critical fiber length. A higher proportion of fibers longer than the critical fiber length is in the overflow stream, and a higher proportion of fibers shorter than the critical fiber length in the undertow stream. The data obtained from FQA suggest that the split ratio is the most significant parameter for fiber fractionation performance, which is the best when the split ratio is in the range between 0.14 and 0.2. The effect of feed rate on fiber fractionation performance is weak.展开更多
The water-inrush mechanism of strong water-guide collapse column in coal seam is studied based on the establishment of geological and mathematical models of "triangle" water-inrush mode. The geological backg...The water-inrush mechanism of strong water-guide collapse column in coal seam is studied based on the establishment of geological and mathematical models of "triangle" water-inrush mode. The geological background of Shuangliu mine is considered a prototype, similar simulation tests are adopted to analyze the water-inrush rules under this model, and the formation of water-guide channel and water-inrush process is investigated by examining the changes in rock resistivity. This work also uses the coupled cloud image derived from numerical simulation software to verify the results of simulation test. Results show that the numerical simulation of "triangle" water-inrush mode is consistent with the similar simulation. The "triangle" seepage area, which is located at the bottom of collapse columns and is connected to aquifer, is caused by the altered seepage direction and strengthened seepage actions after the overlapping of hydraulic transverse seepage in collapse column and hydraulic vertical seepage flow in aquifer. Under "triangle"water-inrush model, water-guide channel is formed by the communication between plastic failure zone of working face baseplate and"triangular" seepage area. Accordingly, the threatening water-inrush distance between working face and collapse column increases by 20 m compared with that of theoretical calculation.展开更多
The optimum control strategy and the saving potential of all variable chiller plant under the conditions of changing building cooling load and cooling water supply temperature were investigated. Based on a simulation ...The optimum control strategy and the saving potential of all variable chiller plant under the conditions of changing building cooling load and cooling water supply temperature were investigated. Based on a simulation model of water source chiller plant established in dynamic transient simulation program (TRNSYS),the four-variable quadratic orthogonal regression experiments were carried out by taking cooling load,cooling water supply temperature,cooling water flow rate and chilled water flow rate as variables,and the fitting formulas expressing the relationships between the total energy consumption of chiller plant with the four selected parameters was obtained. With the SAS statistical software and MATHEMATICA mathematical software,the optimal chilled water flow rate and cooling water flow rate which result in the minimum total energy consumption were determined under continuously varying cooling load and cooling water supply temperature. With regard to a chiller plant serving an office building in Shanghai,the total energy consumptions under different control strategies were computed in terms of the forecasting function of cooling load and water source temperature. The results show that applying the optimal control strategy to the chiller plant can bring a saving of 23.27% in power compared with the corresponding conventional variable speed plant,indicating that the optimal control strategy can improve the energy efficiency of chiller plant.展开更多
文摘Maximize parallelism and minimize communication overheads are important issues for distributed memory systems. Communication and data redistribution cannot be avoided even when considering global optimization of data distribution and computation decomposition. A new approach based on loop fusion is presented exploiting pipelining parallelism, thus communication overhead can be hidden and data redistribution can be avoided. This technique exploits pipelining from complex loop structures, which distinguishes itself from traditional pipelining techniques. Ex-periments show that the technique is superior to other optimizations.
文摘Pulp fiber length characterization is addressed in this article. It is .suggested that the proposed separation index H(L) is a viable index to the fiber fractionation performance for evaluating hydrocyclones. Fractionation of softwood (coniferous wood) bleached chemithermomechanical pulp (BCTMP) fiber was carried out with a cylindrical hydrocyclone. Pulp fiber length characteristics in different streams were examined using the fiber quality analyzer (FQA), and the cumulative fiber length fraction, the fiber length fraction density function and the separation index H(L) for different streams were obtained. It is found that H(L) is very useful for characterizing the fiber fractionation performance by indicating the separation capacity of hydrocyclone for individual subgroup of fibers in different streams under different operation conditions. Results of H(L) show that there exists a critical fiber length. A higher proportion of fibers longer than the critical fiber length is in the overflow stream, and a higher proportion of fibers shorter than the critical fiber length in the undertow stream. The data obtained from FQA suggest that the split ratio is the most significant parameter for fiber fractionation performance, which is the best when the split ratio is in the range between 0.14 and 0.2. The effect of feed rate on fiber fractionation performance is weak.
基金Projects(51374093,51104058)supported by the National Natural Science Foundation of ChinaProject(2013CB227903)supported by the National Basic Research Program of China
文摘The water-inrush mechanism of strong water-guide collapse column in coal seam is studied based on the establishment of geological and mathematical models of "triangle" water-inrush mode. The geological background of Shuangliu mine is considered a prototype, similar simulation tests are adopted to analyze the water-inrush rules under this model, and the formation of water-guide channel and water-inrush process is investigated by examining the changes in rock resistivity. This work also uses the coupled cloud image derived from numerical simulation software to verify the results of simulation test. Results show that the numerical simulation of "triangle" water-inrush mode is consistent with the similar simulation. The "triangle" seepage area, which is located at the bottom of collapse columns and is connected to aquifer, is caused by the altered seepage direction and strengthened seepage actions after the overlapping of hydraulic transverse seepage in collapse column and hydraulic vertical seepage flow in aquifer. Under "triangle"water-inrush model, water-guide channel is formed by the communication between plastic failure zone of working face baseplate and"triangular" seepage area. Accordingly, the threatening water-inrush distance between working face and collapse column increases by 20 m compared with that of theoretical calculation.
基金Project(G-0805-10156) supported by US Energy Foundation
文摘The optimum control strategy and the saving potential of all variable chiller plant under the conditions of changing building cooling load and cooling water supply temperature were investigated. Based on a simulation model of water source chiller plant established in dynamic transient simulation program (TRNSYS),the four-variable quadratic orthogonal regression experiments were carried out by taking cooling load,cooling water supply temperature,cooling water flow rate and chilled water flow rate as variables,and the fitting formulas expressing the relationships between the total energy consumption of chiller plant with the four selected parameters was obtained. With the SAS statistical software and MATHEMATICA mathematical software,the optimal chilled water flow rate and cooling water flow rate which result in the minimum total energy consumption were determined under continuously varying cooling load and cooling water supply temperature. With regard to a chiller plant serving an office building in Shanghai,the total energy consumptions under different control strategies were computed in terms of the forecasting function of cooling load and water source temperature. The results show that applying the optimal control strategy to the chiller plant can bring a saving of 23.27% in power compared with the corresponding conventional variable speed plant,indicating that the optimal control strategy can improve the energy efficiency of chiller plant.