A hydrometallurgical process for indium extraction and ferric oxide powder preparation for soft magnetic ferrite material was developed. Using reduction lixivium from high-acid reductive leaching of zinc oxide calcine...A hydrometallurgical process for indium extraction and ferric oxide powder preparation for soft magnetic ferrite material was developed. Using reduction lixivium from high-acid reductive leaching of zinc oxide calcine as raw solution, copper and indium were firstly recovered by iron powder cementation and neutralization. The recovery ratios of Cu and In are 99% and 95%, respectively. Some harmful impurities that have negative influences on magnetic properties of soft magnetic ferrite material are deeply removed with sulfidization purification and neutral flocculation method. Under the optimum conditions, the content of impurities like Cu, Pb, As, Al in pure Zn-Fe sulfate solution are less than 0.004 g/L, but those of Cd, Si, Ca and Mg are relatively high. Finally, thermal precipitation of iron is carried out at 210 ℃ for 1.5 h. The precipitation ratio of Fe is 93.33%. Compared with the quality standard of ferric oxide for soft magnetic ferrite materials, the contents of Al and Mg in obtained ferric oxide powder meet the requirement of YHT1 level of ferric oxide, and those of Si, Ca meet the requirement of YHT3 level of ferric oxide. XRD and SEM characterizations confirm that the obtained sample is well-dispersed spindle spherule with regular a-Fe2O3 crystal structure. The length-to-diameter ratio ofa-Fe2O3 powder is (3-4):1 with an average particle size of 0.5 μm.展开更多
Spherical carbonyl iron(Fe)powders were coated with magnesioferrite(MgFe2O4)insulating coating layer and then mixed with epoxy-modified silicone resin(ESR).Soft magnetic composites(SMCs)were fabricated by compaction o...Spherical carbonyl iron(Fe)powders were coated with magnesioferrite(MgFe2O4)insulating coating layer and then mixed with epoxy-modified silicone resin(ESR).Soft magnetic composites(SMCs)were fabricated by compaction of the coated powders and annealing treatment.Transmission electron microscopy(TEM),scanning electron microscopy(SEM),energy dispersive spectroscopy(EDS),X-ray diffractometry(XRD)and X-ray photoelectron spectroscopy(XPS)revealed that the MgFe2O4 layer was coated on the surface of the iron powders.The magnetic properties of SMCs were determined using a vibrating sample magnetometer and an auto testing system for magnetic materials.The results showed that the SMCs prepared at 800 MPa and 550℃ exhibited a significant core loss of 167.5 W/kg at 100 kHz and 50 mT.展开更多
基金Project(50674104) supported by the National Natural Science Foundation of ChinaProject(2006BA02B04-4-2) supported by the Planned Science and Technology of China
文摘A hydrometallurgical process for indium extraction and ferric oxide powder preparation for soft magnetic ferrite material was developed. Using reduction lixivium from high-acid reductive leaching of zinc oxide calcine as raw solution, copper and indium were firstly recovered by iron powder cementation and neutralization. The recovery ratios of Cu and In are 99% and 95%, respectively. Some harmful impurities that have negative influences on magnetic properties of soft magnetic ferrite material are deeply removed with sulfidization purification and neutral flocculation method. Under the optimum conditions, the content of impurities like Cu, Pb, As, Al in pure Zn-Fe sulfate solution are less than 0.004 g/L, but those of Cd, Si, Ca and Mg are relatively high. Finally, thermal precipitation of iron is carried out at 210 ℃ for 1.5 h. The precipitation ratio of Fe is 93.33%. Compared with the quality standard of ferric oxide for soft magnetic ferrite materials, the contents of Al and Mg in obtained ferric oxide powder meet the requirement of YHT1 level of ferric oxide, and those of Si, Ca meet the requirement of YHT3 level of ferric oxide. XRD and SEM characterizations confirm that the obtained sample is well-dispersed spindle spherule with regular a-Fe2O3 crystal structure. The length-to-diameter ratio ofa-Fe2O3 powder is (3-4):1 with an average particle size of 0.5 μm.
基金Project(2016YFB0700302)supported by the National Key Research and Development Program of ChinaProjects(51862030,51563020)supported by the National Natural Science Foundation of China。
文摘Spherical carbonyl iron(Fe)powders were coated with magnesioferrite(MgFe2O4)insulating coating layer and then mixed with epoxy-modified silicone resin(ESR).Soft magnetic composites(SMCs)were fabricated by compaction of the coated powders and annealing treatment.Transmission electron microscopy(TEM),scanning electron microscopy(SEM),energy dispersive spectroscopy(EDS),X-ray diffractometry(XRD)and X-ray photoelectron spectroscopy(XPS)revealed that the MgFe2O4 layer was coated on the surface of the iron powders.The magnetic properties of SMCs were determined using a vibrating sample magnetometer and an auto testing system for magnetic materials.The results showed that the SMCs prepared at 800 MPa and 550℃ exhibited a significant core loss of 167.5 W/kg at 100 kHz and 50 mT.