Recently, many programs have been developed for simulation or analysis of the different parameters of light propagation in optical fibers, either for sensing or for communication purposes. In this paper, it is shown t...Recently, many programs have been developed for simulation or analysis of the different parameters of light propagation in optical fibers, either for sensing or for communication purposes. In this paper, it is shown the COMSOL Multiphysics as a fairly robust and simple program, due to the existence of a graphical environment, to perform simulations with good accuracy. Results are compared with other simulation analysis, focusing on the surface plasmon resonance (SPR) phenomena for refractive index sensing in a D-type optical fiber, where the characteristics of the material layers, in terms of the type and thickness, and the residual fiber cladding thickness are optimized.展开更多
Soft magnetic composite with micro-cellular structure was prepared by spark plasma sintering(SPS) process with Fe73.5Cu1Nb3Si13.5B9 micron-powders clad by 5wt% Zn0.5Ni0.5Fe2O4 nano-particles.The effect of SPS on the m...Soft magnetic composite with micro-cellular structure was prepared by spark plasma sintering(SPS) process with Fe73.5Cu1Nb3Si13.5B9 micron-powders clad by 5wt% Zn0.5Ni0.5Fe2O4 nano-particles.The effect of SPS on the micro structure of the Finemet powder and the micro structure of the composite were studied.It has been found that the as-prepared composite consists of Fe73.5Cu1Nb3Si13.5B9 cells and the cell-wall composed of nano Zn0.5Ni0.5Fe2O4 particles distributing around Fe73.5Cu1Nb3Si13.5B9 cell-body.The composite exhibits low eddy-current loss which is to be resulted by high resistivity of the Zn0.5Ni0.5Fe2O4 cell-wall.The sintered samples were annealed at different temperature and the magnetic properties at different frequency of the annealed samples were measured.It shows that the Zn0.5Ni0.5Fe2O4 cell-wall possesses good thermostability.展开更多
文摘Recently, many programs have been developed for simulation or analysis of the different parameters of light propagation in optical fibers, either for sensing or for communication purposes. In this paper, it is shown the COMSOL Multiphysics as a fairly robust and simple program, due to the existence of a graphical environment, to perform simulations with good accuracy. Results are compared with other simulation analysis, focusing on the surface plasmon resonance (SPR) phenomena for refractive index sensing in a D-type optical fiber, where the characteristics of the material layers, in terms of the type and thickness, and the residual fiber cladding thickness are optimized.
基金supported by the National Natural Science Foundations of China (Grant Nos. 50771023 and 51071034)
文摘Soft magnetic composite with micro-cellular structure was prepared by spark plasma sintering(SPS) process with Fe73.5Cu1Nb3Si13.5B9 micron-powders clad by 5wt% Zn0.5Ni0.5Fe2O4 nano-particles.The effect of SPS on the micro structure of the Finemet powder and the micro structure of the composite were studied.It has been found that the as-prepared composite consists of Fe73.5Cu1Nb3Si13.5B9 cells and the cell-wall composed of nano Zn0.5Ni0.5Fe2O4 particles distributing around Fe73.5Cu1Nb3Si13.5B9 cell-body.The composite exhibits low eddy-current loss which is to be resulted by high resistivity of the Zn0.5Ni0.5Fe2O4 cell-wall.The sintered samples were annealed at different temperature and the magnetic properties at different frequency of the annealed samples were measured.It shows that the Zn0.5Ni0.5Fe2O4 cell-wall possesses good thermostability.