Soil behavior can reflect the characteristics of principal stress rotation under dynamic wave and traffic loads. Unequal amplitudes of tensile and compressive stresses applied to soils have complex effects on foundati...Soil behavior can reflect the characteristics of principal stress rotation under dynamic wave and traffic loads. Unequal amplitudes of tensile and compressive stresses applied to soils have complex effects on foundation soils in comparison with the pure principal stress rotation path. A series of undrained cyclic hollow torsional shear tests were performed on typical remolded soft clay from the Hexi area of Nanjing, China. The main control parameters were the tensile and compressive stress amplitude ratio(α) and the cyclic dynamic stress ratio(η). It was found that the critical η tended to remain constant at 0.13, when the value of the compressive stress amplitude was higher than the tensile stress amplitude. However, the influence of the tensile stress was limited by the dynamic stress level when α= 1.For obvious structural change in the soil, the corresponding numbers of cyclic vibration cycles were found to be independent of α at low stress levels and were only related to η. Finally, a new method for evaluating the failure of remolded soft clay was presented. It considers the influence of the tensile and compressive stresses which caused by complex stress paths of the principal stress rotation. This criterion can distinguish stable, critical, and destructive states based on the pore-water-pressure-strain coupling curve while also providing a range of failure strain and vibration cycles. These results provide the theoretical support for systematic studies of principal stress rotation using constitutive models.展开更多
An equivalent visco-elastic model of saturated soft clay was studied under unconsolidated undrained (UU) condition, which can be used to evaluate the stability of ocean foundation. Cyclic triaxial compression and exte...An equivalent visco-elastic model of saturated soft clay was studied under unconsolidated undrained (UU) condition, which can be used to evaluate the stability of ocean foundation. Cyclic triaxial compression and extension tests were conducted to study the parameters of the model. Results showed that the relationships of the damping ratio and the octahedral shear modulus with the octahedral cyclic shear strain were nearly unique, when the initial octahedral shear stress ratios of specimens were equal to 0.3, 0.5 and 0.7. The relationships of the damping ratio and the octahedral shear modulus with the octahedral cyclic shear strain determined from the cyclic triaxial compression tests were basically the same as those determined from the cyclic triaxial extension tests. Furthermore, the relationships were not related to the initial stress condition, the test stress state and the octahedral cyclic shear stress ratio. The relationships determined from the cyclic triaxial tests under no deviatoric stress were basically the same as those determined from the cyclic triaxial tests under deviatoric stress. The change of the octahedral cyclic accumulative strain with the number of cycles was unique under different tests stress states. An equivalent visco-elastic constitutive model of saturated soft clay under UU condition was initially established.展开更多
基金financial support of the National Natural Science Foundation of China(51420105013 and 51479060)Fundamental Research Funds for the Central Universities(2015B17114)Science and Technology Project of Shandong Housing and Urban-Rural Development(2014QG009)
文摘Soil behavior can reflect the characteristics of principal stress rotation under dynamic wave and traffic loads. Unequal amplitudes of tensile and compressive stresses applied to soils have complex effects on foundation soils in comparison with the pure principal stress rotation path. A series of undrained cyclic hollow torsional shear tests were performed on typical remolded soft clay from the Hexi area of Nanjing, China. The main control parameters were the tensile and compressive stress amplitude ratio(α) and the cyclic dynamic stress ratio(η). It was found that the critical η tended to remain constant at 0.13, when the value of the compressive stress amplitude was higher than the tensile stress amplitude. However, the influence of the tensile stress was limited by the dynamic stress level when α= 1.For obvious structural change in the soil, the corresponding numbers of cyclic vibration cycles were found to be independent of α at low stress levels and were only related to η. Finally, a new method for evaluating the failure of remolded soft clay was presented. It considers the influence of the tensile and compressive stresses which caused by complex stress paths of the principal stress rotation. This criterion can distinguish stable, critical, and destructive states based on the pore-water-pressure-strain coupling curve while also providing a range of failure strain and vibration cycles. These results provide the theoretical support for systematic studies of principal stress rotation using constitutive models.
基金Supported by National Natural Science Foundation of China ( No. 51179120)
文摘An equivalent visco-elastic model of saturated soft clay was studied under unconsolidated undrained (UU) condition, which can be used to evaluate the stability of ocean foundation. Cyclic triaxial compression and extension tests were conducted to study the parameters of the model. Results showed that the relationships of the damping ratio and the octahedral shear modulus with the octahedral cyclic shear strain were nearly unique, when the initial octahedral shear stress ratios of specimens were equal to 0.3, 0.5 and 0.7. The relationships of the damping ratio and the octahedral shear modulus with the octahedral cyclic shear strain determined from the cyclic triaxial compression tests were basically the same as those determined from the cyclic triaxial extension tests. Furthermore, the relationships were not related to the initial stress condition, the test stress state and the octahedral cyclic shear stress ratio. The relationships determined from the cyclic triaxial tests under no deviatoric stress were basically the same as those determined from the cyclic triaxial tests under deviatoric stress. The change of the octahedral cyclic accumulative strain with the number of cycles was unique under different tests stress states. An equivalent visco-elastic constitutive model of saturated soft clay under UU condition was initially established.