期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
空间精密位移信号软细分方法研究 被引量:9
1
作者 刘小康 陈自然 +1 位作者 王先全 郑方燕 《仪器仪表学报》 EI CAS CSCD 北大核心 2016年第3期540-545,共6页
为了解决高精度数控装备对位移传感器高分辨力反馈的需求,本文提出通过对空域信号特征的分析,从时空变换理论模型的角度去研究位移测量问题;利用光栅周期性栅线作为等空间位置触发位置采样建立空间序列模型;通过对光栅莫尔条纹信号自适... 为了解决高精度数控装备对位移传感器高分辨力反馈的需求,本文提出通过对空域信号特征的分析,从时空变换理论模型的角度去研究位移测量问题;利用光栅周期性栅线作为等空间位置触发位置采样建立空间序列模型;通过对光栅莫尔条纹信号自适应预测细分模型阶数与系数估计算法完成光栅莫尔条纹信号细分。实验结果证明此方法可以实现光栅莫尔条纹400倍细分,细分精度优于信号周期的±1%。此细分方法利用光栅刻划精度,信号细分精度与光栅信号波形质量无关,在不增加硬件的条件下实现光栅莫尔条纹精密细分,具有重要实际应用价值。 展开更多
关键词 软细分 莫尔条纹 自适应 误差修正
下载PDF
Altered Gene Expression in Articular Chondrocytes of Smad3^(ex8/ex8) Mice, Revealed by Gene Profiling Using Microarrays 被引量:2
2
作者 王浩 张继帅 +1 位作者 孙强 杨晓 《Journal of Genetics and Genomics》 SCIE CAS CSCD 北大核心 2007年第8期698-708,共11页
It has been previously reported that small mother against decapentaplegic 3 (Smad3) gene knockout (Smad3^ex8/ex8) mice displays phenotypes similar to human osteoarthritis, as characterized by abnormal hypertrophic... It has been previously reported that small mother against decapentaplegic 3 (Smad3) gene knockout (Smad3^ex8/ex8) mice displays phenotypes similar to human osteoarthritis, as characterized by abnormal hypertrophic differentiation of articular chondrocytes. To further clarify the crucial target genes that mediate transformation growth factor-β (TGF-β)/Smad3 signals on articular chondrocytes differentiation and investigate the underlying molecular mechanism of osteoarthritis, microarrays were used to perform comparative transcriptional profiling in the articular cartilage between Smad3^ex8/ex8and wild-type mice on day five after birth. The gene profding results showed that the activity of bone morphogenetic protein (BMP) and TGF-β/cell division cycle 42 (Cdc42) signaling pathways were enhanced in Smad3^ex8/ex8 chondrocytes. Moreover, there was altered gene expression in growth hormone/insulin-like growth factor 1 (Igfl) axis and fibroblast growth factor (Fgf) signaling pathway. Notably, protein synthesis related genes and electron transport chain related genes were upregulated in Smad3^ex8/ex8 chondrocytes, implying that accelerated protein synthesis and enhanced cellular respiration might contribute to hypertrophic differentiation of articular chondrocytes and the pathogenesis of osteoarthritis. 展开更多
关键词 TGF-β SMAD3 articular chondrocytes hypertrophic differentiation OSTEOARTHRITIS MICROARRAY
下载PDF
T-2 toxin-induced apoptosis involving Fas,p53,Bcl-xL,Bcl-2,Bax and caspase-3 signaling pathways in human chondrocytes 被引量:19
3
作者 Jing-hong CHEN Jun-ling CAO Yong-lie CHU Zhi-lun WANG Zhan-tian YANG Hong-lin WANG 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2008年第6期455-463,共9页
Objective:To investigate the effects of T-2 toxin on expressions of Fas,p53,Bcl-xL,Bcl-2,Bax and caspase-3 on human chondrocytes.Methods:Human chondrocytes were treated with T-2 toxin(1~20 ng/ml)for 5 d.Fas,p53 and o... Objective:To investigate the effects of T-2 toxin on expressions of Fas,p53,Bcl-xL,Bcl-2,Bax and caspase-3 on human chondrocytes.Methods:Human chondrocytes were treated with T-2 toxin(1~20 ng/ml)for 5 d.Fas,p53 and other apoptosis-related proteins such as Bax,Bcl-2,Bcl-xL,caspase-3 were determined by Western blot analysis and their mRNA expressions were determined by reverse transcriptase-polymerase chain reaction(RT-PCR).Results:Increases in Fas,p53 and the pro-apoptotic factor Bax protein and mRNA expressions and a decrease of the anti-apoptotic factor Bcl-xL were observed in a dose-dependent manner after exposures to 1~20 ng/ml T-2 toxin,while the expression of the anti-apoptotic factor Bcl-2 was unchanged.Meanwhile,T-2 toxin could also up-regulate the expressions of both pro-caspase-3 and caspase-3 in a dose-dependent manner.Conclusion:These data suggest a possible underlying molecular mechanism for T-2 toxin to induce the apoptosis sig- naling pathway in human chondrocytes by regulation of apoptosis-related proteins. 展开更多
关键词 APOPTOSIS Apoptosis-related proteins CHONDROCYTE T-2 toxin
下载PDF
Chondrogenic differentiation of rat bone marrow mesenchymal stem cells induced by puerarin and tetrandrine 被引量:1
4
作者 Xin-Ran Dong Meng-Jiao Hu +2 位作者 Hui-Xin Pan Ke-Feng Li Yuan-Lu Cui 《Acupuncture and Herbal Medicine》 2022年第2期130-138,共9页
Objective: This study aims to clarify the effect of the active components puerarin and tetrandrine on the chondrogenic differentiation of bone marrow mesenchymal stem cells(BMSCs).Methods: Using network pharmacology, ... Objective: This study aims to clarify the effect of the active components puerarin and tetrandrine on the chondrogenic differentiation of bone marrow mesenchymal stem cells(BMSCs).Methods: Using network pharmacology, protein targets of puerarin and tetrandrine were predicted, and a database of cartilage formation targets was established. The protein target information related to disease was then collected, and the drug-targeting network was constructed by analyzing the protein–protein interactions. Genes related to chondrogenesis induced by puerarin and tetrandrine and chondroblast differentiation signaling pathways were searched. Finally, potential drug-and disease-related genes,as well as proteins, were screened and verified using real-time RT-PCR and western blotting.Results: Network pharmacological studies have shown that puerarin and tetrandrine are involved in BMSCs cartilage differentiation. The experimental results showed that puerarin and tetrandrine could regulate the expression of cartilage differentiation-related genes and proteins. Puerarin increased the protein expression of COL2 A1, COL10 A1, MMP13, and SOX-9,as well as the gene expression of Col2 a1, Mmp13, Tgfb1, and Sox-9. Tetrandrine increased the protein expression of COL2 A1,COL10 A1, MMP13, and SOX-9, as well as the gene expression of Col10 a1, Tgfb1, Sox-9, and Acan. The combination of puerarin and tetrandrine increased the protein expression of COL2 A1, COL10 A1, MMP13, and SOX-9 and the gene expression of Col2 a1,Col10 a1, Sox-9, and Acan.Conclusions: Puerarin, tetrandrine, and their combination can promote the proliferation of BMSCs and induce their differentiation into chondrocytes, and they are thus expected to be inducers of chondrogenic differentiation. These results suggest that puerarin and tetrandrine have potential therapeutic effects on osteoarthritis. 展开更多
关键词 Bone marrow mesenchymal stem cells(BMSCs) Chondrogenic differentiation Network pharmacology PUERARIN TETRANDRINE
下载PDF
Ontogeny of rat chondrocyte proliferation:studies in embryo,adult and osteoarthritic (OA) cartilage
5
作者 Madaí A GóMEZ-CAMARILLO Juan B.KOURI 《Cell Research》 SCIE CAS CSCD 2005年第2期99-104,共6页
The aim of this work was to study the ontogeny of chondrocyte cell division using embryo, adult and osteoarthritic(OA) cartilage. We searched for mitosis phases and performed a comparative evaluation of mitotic index,... The aim of this work was to study the ontogeny of chondrocyte cell division using embryo, adult and osteoarthritic(OA) cartilage. We searched for mitosis phases and performed a comparative evaluation of mitotic index, basic fibro-blast growth factor b (FGFb), transforming growth factor β1 (TGF-β1) receptors, cyclin dependent kinase (CDK1)and Cyclin-B expression in fetal, neonate, 3, 5, 8 weeks old rats and experimental OA. Our results showed that mitosisphases were observed in all normal cartilage studied, although, we found a decrease in mitotic index in relation to tissuedevelopment. No mitosis was detected in OA cartilage. We also found a statistical significant reduction in cell number inOA cartilage, compared with the normal tissue. Furthermore, FGFb and TGF-β1 receptors diminished in relation totissue development, and were very scarce in experimental OA. Western blot assays showed CDK-1 expression in allcases, including human-OA cartilage. Similar results were observed for Cyclin-B, except for 8 weeks, when it was notexpressed. Our results suggest that cell division seems to be scarce, if not absent within the OA cartilage studied.Nevertheless, the existence of factors essential for cell division leaves open the question concerning chondrocyteproliferation in OA cartilage, which is likely to be present in the early stages of the disease. 展开更多
关键词 PROLIFERATION CHONDROCYTES mitotic index growth factors.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部