期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
一类基于概率优先经验回放机制的分布式多智能体软行动-评论者算法 被引量:4
1
作者 张严心 孔涵 +2 位作者 殷辰堃 王子豪 黄志清 《北京工业大学学报》 CAS CSCD 北大核心 2023年第4期459-466,共8页
针对实际多智能体系统对交互经验的庞大需求,在单智能体领域分布式架构的基础上,提出概率经验优先回放机制与分布式架构并行的多智能体软行动-评论者算法(multi-agent soft Actor-Critic with probabilistic prioritized experience rep... 针对实际多智能体系统对交互经验的庞大需求,在单智能体领域分布式架构的基础上,提出概率经验优先回放机制与分布式架构并行的多智能体软行动-评论者算法(multi-agent soft Actor-Critic with probabilistic prioritized experience replay based on a distributed paradigm, DPER-MASAC).该算法中的行动者以并行与环境交互的方式收集经验数据,为突破单纯最近经验在多智能体高吞吐量情况下被高概率抽取的局限性,提出更为普适的改进的基于优先级的概率方式对经验数据进行抽样利用的模式,并对智能体的网络参数进行更新.为验证算法的效率,设计了难度递增的2类合作和竞争关系共存的捕食者-猎物任务场景,将DPER-MASAC与多智能体软行动-评论者算法(multi-agent soft Actor-Critic, MASAC)和带有优先经验回放机制的多智能体软行动-评论者算法(multi-agent soft Actor-Critic with prioritized experience replay, PER-MASAC)2种基线算法进行对比实验.结果表明,采用DPER-MASAC训练的捕食者团队其决策水平在最终性能和任务成功率2个维度上均有明显提升. 展开更多
关键词 多智能体系统(MAS) 多智能体深度强化学习(DRL) 优先经验回放机制 分布式结构 抽样概率 行动-评论者算法
下载PDF
基于CQL-SAC的自动驾驶防撞决策方法
2
作者 刘玉辉 于镝 《北京信息科技大学学报(自然科学版)》 2024年第3期16-24,共9页
针对深度强化学习在自动驾驶任务中存在价值函数过估计、学习效率低、安全性差等问题,提出了一种自动驾驶防撞决策方法。首先,将保守Q学习(conservative Q-learning, CQL)算法与软行动评论(soft actor-critic, SAC)算法融合,提出CQL-SA... 针对深度强化学习在自动驾驶任务中存在价值函数过估计、学习效率低、安全性差等问题,提出了一种自动驾驶防撞决策方法。首先,将保守Q学习(conservative Q-learning, CQL)算法与软行动评论(soft actor-critic, SAC)算法融合,提出CQL-SAC算法,以缓解价值过估计问题。然后,在算法训练过程中引入专家经验,实现算法快速收敛,以解决学习效率低的问题。最后,利用防撞模块对CQL-SAC算法输出的动作进行安全检查和矫正,避免车辆碰撞。在基于高速公路的仿真场景下对方法有效性进行验证。仿真结果表明,在训练阶段,CQL-SAC算法相比SAC算法和样本内行动评论(in-sample actor-critic, InAC)算法收敛速度分别提升12.5%、5.4%,引入专家经验后算法收敛速度进一步提升14.3%;在测试阶段,本文算法与SAC和InAC算法相比,成功率分别提升17、12百分点,平均回合奖励分别提升23.1%、10.7%。 展开更多
关键词 智慧交通 自动驾驶决策 保守Q学习算法 行动评论算法 专家经验 防撞策略
下载PDF
基于动作约束深度强化学习的安全自动驾驶方法 被引量:16
3
作者 代珊珊 刘全 《计算机科学》 CSCD 北大核心 2021年第9期235-243,共9页
随着人工智能的发展,自动驾驶领域的研究也日益壮大。深度强化学习(Deep Reinforcement Learning,DRL)方法是该领域的主要研究方法之一。其中,安全探索问题是该领域的一个研究热点。然而,大部分DRL算法为了提高样本的覆盖率并没有对探... 随着人工智能的发展,自动驾驶领域的研究也日益壮大。深度强化学习(Deep Reinforcement Learning,DRL)方法是该领域的主要研究方法之一。其中,安全探索问题是该领域的一个研究热点。然而,大部分DRL算法为了提高样本的覆盖率并没有对探索方法进行安全限制,使无人车探索时会陷入某些危险状态,从而导致学习失败。针对该问题,提出了一种基于动作约束的软行动者-评论家算法(Constrained Soft Actor-critic,CSAC),该方法首先对环境奖赏进行了合理限制。无人车动作转角过大时会产生抖动,因此在奖赏函数中加入惩罚项,使无人车尽量避免陷入危险状态。另外,CSAC方法又对智能体的动作进行了约束。当目前状态选择动作后使无人车偏离轨道或者发生碰撞时,标记该动作为约束动作,在之后的训练中通过合理约束来更好地指导无人车选择新动作。为了体现CSAC方法的优势,将CSAC方法应用在自动驾驶车道保持任务中,并与SAC算法进行对比。结果表明,引入安全机制的CSAC方法可以有效避开不安全动作,提高自动驾驶过程中的稳定性,同时还加快了模型的训练速度。最后,将训练好的模型移植到带有树莓派的无人车上,进一步验证了模型的泛用性。 展开更多
关键词 安全自动驾驶 深度强化学习 软行动者-评论家 车道保持 无人车
下载PDF
一种针对坦克速度控制的深度强化学习算法 被引量:1
4
作者 崔新悦 阳周明 +2 位作者 赵彦东 杨霄 范玲瑜 《火力与指挥控制》 CSCD 北大核心 2022年第4期120-125,共6页
坦克的无人化将成为作战装备的未来研究方向之一,针对坦克无人驾驶如何提高智能体训练速度是当前深度强化学习领域的一大瓶颈,提出一种最近经验回放的探索策略来对传统的软行动者-评论家算法(soft actor-critic,SAC)进行改进,在训练阶段... 坦克的无人化将成为作战装备的未来研究方向之一,针对坦克无人驾驶如何提高智能体训练速度是当前深度强化学习领域的一大瓶颈,提出一种最近经验回放的探索策略来对传统的软行动者-评论家算法(soft actor-critic,SAC)进行改进,在训练阶段,赋予最近经验更大权重值,增大其采样概率,从而提高了训练的稳定性和收敛速度。在此基础上,基于应用环境以及作战任务设计奖励函数,提高算法的战场适用性。构建具体作战场景,对改进的算法与传统算法进行对比,结果表明,提出的算法在坦克速度控制上表现出更好的性能。 展开更多
关键词 深度强化学习 软行动者 - 评论家算法 坦克速度控制 采样策略
下载PDF
基于随机加权三重Q学习的异策略最大熵强化学习算法 被引量:2
5
作者 范静宇 刘全 《计算机科学》 CSCD 北大核心 2022年第6期335-341,共7页
强化学习是机器学习中一个重要的分支,随着深度学习的发展,深度强化学习逐渐发展为强化学习研究的重点。因应用广泛且实用性较强,面向连续控制问题的无模型异策略深度强化学习算法备受关注。同基于离散动作的Q学习一样,类行动者-评论家... 强化学习是机器学习中一个重要的分支,随着深度学习的发展,深度强化学习逐渐发展为强化学习研究的重点。因应用广泛且实用性较强,面向连续控制问题的无模型异策略深度强化学习算法备受关注。同基于离散动作的Q学习一样,类行动者-评论家算法会受到动作值高估问题的影响。在类行动者-评论家算法的学习过程中,剪切双Q学习可以在一定程度上解决动作值高估的问题,但同时也引入了一定程度的低估问题。为了进一步解决类行动者-评论家算法中的高低估问题,提出了一种新的随机加权三重Q学习方法。该方法可以更好地解决类行动者-评论家算法中的高低估问题。此外,将这种新的方法与软行动者-评论家算法结合,提出了一种新的基于随机加权三重Q学习的软行动者-评论家算法,该算法在限制Q估计值在真实Q值附近的同时,通过随机加权方法增加Q估计值的随机性,从而有效解决了学习过程中对动作值的高低估问题。实验结果表明,相比SAC算法、DDPG算法、PPO算法与TD3算法等深度强化学习算法,SAC-RWTQ算法可以在gym仿真平台中的多个Mujoco任务上获得更好的表现。 展开更多
关键词 Q学习 深度学习 异策略强化学习 连续动作空间 最大熵 软行动者—评论家算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部