-
题名基于动作约束深度强化学习的安全自动驾驶方法
被引量:16
- 1
-
-
作者
代珊珊
刘全
-
机构
苏州大学计算机科学与技术学院
苏州大学江苏省计算机信息处理技术重点实验室
吉林大学符号计算与知识工程教育部重点实验室
软件新技术与产业化协同创新中心
-
出处
《计算机科学》
CSCD
北大核心
2021年第9期235-243,共9页
-
基金
国家自然科学基金(61772355,61702055,61502323,61502329)
江苏省高等学校自然科学研究重大项目(18KJA520011,17KJA520004)
+2 种基金
吉林大学符号计算与知识工程教育部重点实验室资助项目(93K172014K04,93K172017K18)
苏州市应用基础研究计划工业部分(SYG201422)
江苏高校优势学科建设工程资助项目。
-
文摘
随着人工智能的发展,自动驾驶领域的研究也日益壮大。深度强化学习(Deep Reinforcement Learning,DRL)方法是该领域的主要研究方法之一。其中,安全探索问题是该领域的一个研究热点。然而,大部分DRL算法为了提高样本的覆盖率并没有对探索方法进行安全限制,使无人车探索时会陷入某些危险状态,从而导致学习失败。针对该问题,提出了一种基于动作约束的软行动者-评论家算法(Constrained Soft Actor-critic,CSAC),该方法首先对环境奖赏进行了合理限制。无人车动作转角过大时会产生抖动,因此在奖赏函数中加入惩罚项,使无人车尽量避免陷入危险状态。另外,CSAC方法又对智能体的动作进行了约束。当目前状态选择动作后使无人车偏离轨道或者发生碰撞时,标记该动作为约束动作,在之后的训练中通过合理约束来更好地指导无人车选择新动作。为了体现CSAC方法的优势,将CSAC方法应用在自动驾驶车道保持任务中,并与SAC算法进行对比。结果表明,引入安全机制的CSAC方法可以有效避开不安全动作,提高自动驾驶过程中的稳定性,同时还加快了模型的训练速度。最后,将训练好的模型移植到带有树莓派的无人车上,进一步验证了模型的泛用性。
-
关键词
安全自动驾驶
深度强化学习
软行动者-评论家
车道保持
无人车
-
Keywords
Safe automatic driving
Deep reinforcement learning
Soft actor-critic
Lane-keeping
Driverless cars
-
分类号
TP181
[自动化与计算机技术—控制理论与控制工程]
-