The dynamic errors of gyros are the important error sources of a strapdown inertial navigation system. In order to identify the dynamic error model coefficients accurately, the static error model coefficients which la...The dynamic errors of gyros are the important error sources of a strapdown inertial navigation system. In order to identify the dynamic error model coefficients accurately, the static error model coefficients which lay a foundation for compensating while identifying the dynamic error model are identified in the gravity acceleration fields by using angular position function of the three-axis turntable. The angular acceleration and angular velocity are excited on the input, output and spin axis of the gyros when the outer axis and the middle axis of a three-axis turntable are in the uniform angular velocity state simultaneously, while the inner axis of the turntable is in different static angular positions. 8 groups of data are sampled when the inner axis is in 8 different angular positions. These data are the function of the middle axis positions and the inner axis positions. For these data, harmonic analysis method is applied two times versus the middle axis positions and inner axis positions respectively so that the dynamic error model coefficients are finally identified through the least square method. In the meantime the optimal angular velocity of the outer axis and the middle axis are selected by computing the determination value of the information matrix.展开更多
In this paper, floating--ring thrust bearings are investigated. A mathematical model is established to analyze the static performance of this kind of bearings, such as the load capacity, frictional power loss, tempera...In this paper, floating--ring thrust bearings are investigated. A mathematical model is established to analyze the static performance of this kind of bearings, such as the load capacity, frictional power loss, temperature rise as well as the angular speed ratio between the floating ring and runner.Meanwhile, a parameter study is also conducted on the characteristics of floating-ring thrust bearings.Finally, the theoretical calculation results are verified by experiments.展开更多
Experiment and numerical simulation technique are used to investigate the tip leakage flow in an axial fan with tip clearance at the design condition. The flow field in the tip region of fan is measured using a PDA (P...Experiment and numerical simulation technique are used to investigate the tip leakage flow in an axial fan with tip clearance at the design condition. The flow field in the tip region of fan is measured using a PDA (Particle Dynamics Analysis) system. The flow is surveyed across the whole passage at fifteen axial locations (from the 100% axial chord in front of the leading edge to the 100% axial chord behind the trailing edge), mainly focusing on the outer 90% blade span. Both experiment measurement and numerical simulation indicates the leakage flow originated from the tip clearance along the chord rolls up into three dimensional spiral structure to form leakage flow vortex. The interaction of leakage flow and main flow will produce the low velocity zone, and block the flow. The leakage flow almost occupies the most part of flow passage behind the trailing edge.展开更多
The single-shaft parallel hybrid powertrain with the automatic mechanical transmission(AMT)is an efficient hybrid driving system in the hybrid electric bus(HEB),while the electromechanical coupling driving control bec...The single-shaft parallel hybrid powertrain with the automatic mechanical transmission(AMT)is an efficient hybrid driving system in the hybrid electric bus(HEB),while the electromechanical coupling driving control becomes a complicated question to find a transient optimal control method to distribute the power between the engine and the electric machine(EM).This paper proposes an innovative control method to deal with the complicated transient coupling driving process of the electromechanical coupling driving system,considering the accelerating condition and the cruising condition mostly in the city driving cycle of HEB.The EM might be operated at driving mode or generating mode to assist the diesel engine to work in its high-efficiency area.Therefore,the adaptive torque tracking controller has been brought forward to ensure that the EM implements the demand torque as well as compensate the torque fluctuation of diesel engine.The d?q axis mathematical model and back stepping method are employed to deduce the adaptive controller and its adaptive laws.Simulation results demonstrate that the proposed control scheme can make the output torque of two power sources respond rapidly to the demand torque from the powertrain in the given driving condition.The proposed method could be adopted in the real control of HEB to improve the efficiency of the hybrid driving system.展开更多
To reduce the influence of adverse flow conditions at the fan hub and improve fan aerodynamic performance, a modification of conventional axial fan blades with numerical and experimental investigation is presented. Ho...To reduce the influence of adverse flow conditions at the fan hub and improve fan aerodynamic performance, a modification of conventional axial fan blades with numerical and experimental investigation is presented. Hollow blade root is manufactured near the hub. The numerical and experimental results show that hollow blade root has some effect on the static performance. Static pressure of the modified fan is generally the same with that of the datum fan, while, the efficiency curve of the modified fan has a different trend with that of the datum fan. The highest efficiency of the modified fan is 10% greater than that of the datum fan. The orthogonal experimental re- suits of fan noise show that hollow blade root is a feasible method of reducing fan noise, and the maximum value of noise reduction is about 2 dB. The factors affecting the noise reduction of hollow blade root are in the order of importance as follows: hollow blade margin, hollow blade height and hollow blade width. The much smoother pressure distribution of the modified fan than that of the datum fan is the main mechanism of noise reduction of hollow blade root. The research results will provide the proof of the parameter optimization and the structure de- sign for high performance and low noise small axial fans.展开更多
Small-sized axial fans are used as air coolers for electric equipments.But there is a strong demand for higher power of fans according to the increase of quantity of heat from electric devices.Therefore,higher rotatio...Small-sized axial fans are used as air coolers for electric equipments.But there is a strong demand for higher power of fans according to the increase of quantity of heat from electric devices.Therefore,higher rotational speed design is conducted,although it causes the deterioration of the efficiency and the increase of noise.Then the adoption of contra-rotating rotors for the small-sized axial fan is proposed for the improvement of the performance.In the present paper,the performance and the internal flow condition of the small-sized axial fan are shown as a first step of the research for the contra-rotating small-sized axial fan and the important points to apply contra-rotating rotors to the small-sized axial fan are discussed.Furthermore,the numerical flow analysis is conducted to investigate the performance of the contra-rotating small-sized axial fan and internal flow conditions and pressure distributions are clarified and the effect of contra-rotating rotors is considered.展开更多
Forced response analysis of a rocket engine turbine blade was conducted by a decoupled fluid-structure interaction procedure.Aerodynamic forces on the rotor blade were obtained using 3D unsteady flow simulations. The ...Forced response analysis of a rocket engine turbine blade was conducted by a decoupled fluid-structure interaction procedure.Aerodynamic forces on the rotor blade were obtained using 3D unsteady flow simulations. The resulting aerodynamic forces were interpolated to the finite element(FE) model through surface effect elements prior to conducting forced response calculations.Effects of axial gap on aerodynamic forces were studied. In addition, influence of axial gap on the response of the shrouded blade was compared with that on the response of the unshrouded blade. Results demonstrated that as the axial gap increases,time-averaged pressure on the blade surface changes very little, while the pressure fluctuations decrease significantly. Pressure and aerodynamic forces on the blade surface display periodic variation, and the vane passing frequency component is dominant.Amplitudes of aerodynamic forces decrease with increasing axial gap. Restricted by the shroud, deformation and response of shrouded blade are much lower than those of the unshrouded blade. The response of unshrouded blade shows obvious beat vibration phenomenon, while the response of the shrouded blade does not have this characteristic because the shroud restrains multiple harmonics. Blade response in time domain was converted to frequency domain using fast Fourier transformation(FFT).Results revealed that the axial gap mainly affects the forced harmonic at the vane passing frequency, while the other two harmonics at natural frequency are hardly affected. Amplitudes of the unshrouded blade response decrease as the axial gap increases, while amplitudes of the shrouded blade response change very little in comparison.展开更多
Basing on a prototype of DCA airfoil and axial displacement overlap of 10% chord,seven kinds of tangential displacements are taken to simulate the flow conditions in tandem cascade with numerical methods to select a b...Basing on a prototype of DCA airfoil and axial displacement overlap of 10% chord,seven kinds of tangential displacements are taken to simulate the flow conditions in tandem cascade with numerical methods to select a better geometry with higher performance.The configuration with tangential displacement b/t=0.83 would gain better flow performance than the others.On this basis,two configurations with tangential displacement b/t=0.67 and 0.83 among several configurations are chosen to take into experimental investigations by using TR-PIV system to capture the flow velocity instantaneously.The configuration with b/t=0.83 is observed a better flow field performance than b/t=0.67.Its injection flow in the gap zone is much stronger,wake zone area of the front and rear blade is smaller and the stream flow is more improved.It shows that the flow performance in experimental investigation is quite in the same trend as the numerical results predict.展开更多
To give an insight into the clocking effect and its influence on the wake transportation and its interaction, the unsteady three-dimensional flow through a 1.5-stage axial low pressure turbine is simulated numerically...To give an insight into the clocking effect and its influence on the wake transportation and its interaction, the unsteady three-dimensional flow through a 1.5-stage axial low pressure turbine is simulated numerically by using a density-correction based, Reynolds-Averaged Navier-Stokes equations commercial CFD code. The 2nd stator clocking is applied over ten equal tangential positions. The results show that the harmonic blade number ratio is an important factor affecting the clocking effect. The clocking effect has very small influence on the turbine efficiency in this investigation. The difference between the maximum and minimum efficiency is about 0.1%. The maximum efficiency can be achieved when the 1st stator wake enters the 2nd stator passage near blade suction surface and its adjacent wake passes through the 2nd stator passage close to blade pressure surface. The minimum efficiency appears if the 1st stator wake impinges upon the leading edge of the 2nd stator and its adjacent wake of the 1st stator passes through the mid-channel in the 2nd stator. The wake convective transportation and the blade circulation variation due to its impingement on the subsequent blade are the main mechanism affecting the pressure variation in blade surface.展开更多
The pintle injector used for a liquid rocket engine is a newly re-attracted injection system famous for its wide throttle ability with high efficiency. The pintle injector has many variations with complex inner struct...The pintle injector used for a liquid rocket engine is a newly re-attracted injection system famous for its wide throttle ability with high efficiency. The pintle injector has many variations with complex inner structures due to its moving parts. In order to study the rotating flow near the injector tip, which was observed from the cold flow experiment using water and air, a numerical simulation was adopted and a verification of the numerical model was later conducted. For the verification process, three types of experimental data including velocity distributions of gas flows, spray angles and liquid distribution were all compared using simulated results. The numerical simulation was performed using a commercial simulation program with the Eulerian multiphase model and axisymmetric two dimensional grids. The maximum and minimum velocities of gas were within the acceptable range of agreement, however, the spray angles experienced up to 25% error when the momentum ratios were increased. The spray density distributions were quantitatively measured and had good agreement. As a result of this study, it was concluded that the simulation method was properly constructed to study specific flow characteristics of the pintle injector despite having the limitations of two dimensional and coarse grids.展开更多
文摘The dynamic errors of gyros are the important error sources of a strapdown inertial navigation system. In order to identify the dynamic error model coefficients accurately, the static error model coefficients which lay a foundation for compensating while identifying the dynamic error model are identified in the gravity acceleration fields by using angular position function of the three-axis turntable. The angular acceleration and angular velocity are excited on the input, output and spin axis of the gyros when the outer axis and the middle axis of a three-axis turntable are in the uniform angular velocity state simultaneously, while the inner axis of the turntable is in different static angular positions. 8 groups of data are sampled when the inner axis is in 8 different angular positions. These data are the function of the middle axis positions and the inner axis positions. For these data, harmonic analysis method is applied two times versus the middle axis positions and inner axis positions respectively so that the dynamic error model coefficients are finally identified through the least square method. In the meantime the optimal angular velocity of the outer axis and the middle axis are selected by computing the determination value of the information matrix.
文摘In this paper, floating--ring thrust bearings are investigated. A mathematical model is established to analyze the static performance of this kind of bearings, such as the load capacity, frictional power loss, temperature rise as well as the angular speed ratio between the floating ring and runner.Meanwhile, a parameter study is also conducted on the characteristics of floating-ring thrust bearings.Finally, the theoretical calculation results are verified by experiments.
文摘Experiment and numerical simulation technique are used to investigate the tip leakage flow in an axial fan with tip clearance at the design condition. The flow field in the tip region of fan is measured using a PDA (Particle Dynamics Analysis) system. The flow is surveyed across the whole passage at fifteen axial locations (from the 100% axial chord in front of the leading edge to the 100% axial chord behind the trailing edge), mainly focusing on the outer 90% blade span. Both experiment measurement and numerical simulation indicates the leakage flow originated from the tip clearance along the chord rolls up into three dimensional spiral structure to form leakage flow vortex. The interaction of leakage flow and main flow will produce the low velocity zone, and block the flow. The leakage flow almost occupies the most part of flow passage behind the trailing edge.
基金supported by the National Natural Science Foundation of China(Grant No.51275557)the National Science-technology Support Plan Projects of China(Grant No.2013BAG14B01)
文摘The single-shaft parallel hybrid powertrain with the automatic mechanical transmission(AMT)is an efficient hybrid driving system in the hybrid electric bus(HEB),while the electromechanical coupling driving control becomes a complicated question to find a transient optimal control method to distribute the power between the engine and the electric machine(EM).This paper proposes an innovative control method to deal with the complicated transient coupling driving process of the electromechanical coupling driving system,considering the accelerating condition and the cruising condition mostly in the city driving cycle of HEB.The EM might be operated at driving mode or generating mode to assist the diesel engine to work in its high-efficiency area.Therefore,the adaptive torque tracking controller has been brought forward to ensure that the EM implements the demand torque as well as compensate the torque fluctuation of diesel engine.The d?q axis mathematical model and back stepping method are employed to deduce the adaptive controller and its adaptive laws.Simulation results demonstrate that the proposed control scheme can make the output torque of two power sources respond rapidly to the demand torque from the powertrain in the given driving condition.The proposed method could be adopted in the real control of HEB to improve the efficiency of the hybrid driving system.
基金supported by National Natural Science Foundation of China(No.51249003,No.51006090)Major Special Project of Technology Office in Zhejiang Province(No.2011C16038,No.2011C11073)
文摘To reduce the influence of adverse flow conditions at the fan hub and improve fan aerodynamic performance, a modification of conventional axial fan blades with numerical and experimental investigation is presented. Hollow blade root is manufactured near the hub. The numerical and experimental results show that hollow blade root has some effect on the static performance. Static pressure of the modified fan is generally the same with that of the datum fan, while, the efficiency curve of the modified fan has a different trend with that of the datum fan. The highest efficiency of the modified fan is 10% greater than that of the datum fan. The orthogonal experimental re- suits of fan noise show that hollow blade root is a feasible method of reducing fan noise, and the maximum value of noise reduction is about 2 dB. The factors affecting the noise reduction of hollow blade root are in the order of importance as follows: hollow blade margin, hollow blade height and hollow blade width. The much smoother pressure distribution of the modified fan than that of the datum fan is the main mechanism of noise reduction of hollow blade root. The research results will provide the proof of the parameter optimization and the structure de- sign for high performance and low noise small axial fans.
基金supports by the project research aid from The University of Tokushima,Japan Science and Technology Agency and Komiya research aid
文摘Small-sized axial fans are used as air coolers for electric equipments.But there is a strong demand for higher power of fans according to the increase of quantity of heat from electric devices.Therefore,higher rotational speed design is conducted,although it causes the deterioration of the efficiency and the increase of noise.Then the adoption of contra-rotating rotors for the small-sized axial fan is proposed for the improvement of the performance.In the present paper,the performance and the internal flow condition of the small-sized axial fan are shown as a first step of the research for the contra-rotating small-sized axial fan and the important points to apply contra-rotating rotors to the small-sized axial fan are discussed.Furthermore,the numerical flow analysis is conducted to investigate the performance of the contra-rotating small-sized axial fan and internal flow conditions and pressure distributions are clarified and the effect of contra-rotating rotors is considered.
文摘Forced response analysis of a rocket engine turbine blade was conducted by a decoupled fluid-structure interaction procedure.Aerodynamic forces on the rotor blade were obtained using 3D unsteady flow simulations. The resulting aerodynamic forces were interpolated to the finite element(FE) model through surface effect elements prior to conducting forced response calculations.Effects of axial gap on aerodynamic forces were studied. In addition, influence of axial gap on the response of the shrouded blade was compared with that on the response of the unshrouded blade. Results demonstrated that as the axial gap increases,time-averaged pressure on the blade surface changes very little, while the pressure fluctuations decrease significantly. Pressure and aerodynamic forces on the blade surface display periodic variation, and the vane passing frequency component is dominant.Amplitudes of aerodynamic forces decrease with increasing axial gap. Restricted by the shroud, deformation and response of shrouded blade are much lower than those of the unshrouded blade. The response of unshrouded blade shows obvious beat vibration phenomenon, while the response of the shrouded blade does not have this characteristic because the shroud restrains multiple harmonics. Blade response in time domain was converted to frequency domain using fast Fourier transformation(FFT).Results revealed that the axial gap mainly affects the forced harmonic at the vane passing frequency, while the other two harmonics at natural frequency are hardly affected. Amplitudes of the unshrouded blade response decrease as the axial gap increases, while amplitudes of the shrouded blade response change very little in comparison.
文摘Basing on a prototype of DCA airfoil and axial displacement overlap of 10% chord,seven kinds of tangential displacements are taken to simulate the flow conditions in tandem cascade with numerical methods to select a better geometry with higher performance.The configuration with tangential displacement b/t=0.83 would gain better flow performance than the others.On this basis,two configurations with tangential displacement b/t=0.67 and 0.83 among several configurations are chosen to take into experimental investigations by using TR-PIV system to capture the flow velocity instantaneously.The configuration with b/t=0.83 is observed a better flow field performance than b/t=0.67.Its injection flow in the gap zone is much stronger,wake zone area of the front and rear blade is smaller and the stream flow is more improved.It shows that the flow performance in experimental investigation is quite in the same trend as the numerical results predict.
基金supported by China Postdoctoral Science Foundation(Grant No.20100470694)Shanghai Postdoctoral Sustentation Fund,China(GrantNo.11R21413800)
文摘To give an insight into the clocking effect and its influence on the wake transportation and its interaction, the unsteady three-dimensional flow through a 1.5-stage axial low pressure turbine is simulated numerically by using a density-correction based, Reynolds-Averaged Navier-Stokes equations commercial CFD code. The 2nd stator clocking is applied over ten equal tangential positions. The results show that the harmonic blade number ratio is an important factor affecting the clocking effect. The clocking effect has very small influence on the turbine efficiency in this investigation. The difference between the maximum and minimum efficiency is about 0.1%. The maximum efficiency can be achieved when the 1st stator wake enters the 2nd stator passage near blade suction surface and its adjacent wake passes through the 2nd stator passage close to blade pressure surface. The minimum efficiency appears if the 1st stator wake impinges upon the leading edge of the 2nd stator and its adjacent wake of the 1st stator passes through the mid-channel in the 2nd stator. The wake convective transportation and the blade circulation variation due to its impingement on the subsequent blade are the main mechanism affecting the pressure variation in blade surface.
基金supported by Advanced Research Center Program(NRF-2013R1A5A1073861)through the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIP)contracted through Advanced Space Propulsion Research Center at Seoul National University
文摘The pintle injector used for a liquid rocket engine is a newly re-attracted injection system famous for its wide throttle ability with high efficiency. The pintle injector has many variations with complex inner structures due to its moving parts. In order to study the rotating flow near the injector tip, which was observed from the cold flow experiment using water and air, a numerical simulation was adopted and a verification of the numerical model was later conducted. For the verification process, three types of experimental data including velocity distributions of gas flows, spray angles and liquid distribution were all compared using simulated results. The numerical simulation was performed using a commercial simulation program with the Eulerian multiphase model and axisymmetric two dimensional grids. The maximum and minimum velocities of gas were within the acceptable range of agreement, however, the spray angles experienced up to 25% error when the momentum ratios were increased. The spray density distributions were quantitatively measured and had good agreement. As a result of this study, it was concluded that the simulation method was properly constructed to study specific flow characteristics of the pintle injector despite having the limitations of two dimensional and coarse grids.