Effect of soil displacement on friction single pile in the cases of tunneling,surcharge load and uniform soil movement was discussed in details with finite element method.Lateral displacement of the pile caused by soi...Effect of soil displacement on friction single pile in the cases of tunneling,surcharge load and uniform soil movement was discussed in details with finite element method.Lateral displacement of the pile caused by soil displacement reached about 90% of the total displacement,which means that P-Δ effect of axial load can be neglected.The maximum moment of pile decreased from 159 kN·m to 133 kN·m in the case of surcharge load when the axial load increased from 0 to the ultimate load.When deformation of pile caused by soil displacement is large,axial load applied on pile-head plays the role of reducing the maximum bending moment in concrete pile to some extent.When pile is on one side of the tunnel,soil displacements around the pile are all alike,which means that the soil pressures around the pile do not decrease during tunneling.Therefore,Q-s curve of the pile affected by tunneling is very close to that of pile in static loading test.Bearing capacities of piles influenced by surcharge load and uniform soil movement are 2480 kN and 2630 kN,respectively,which are a little greater than that of the pile in static loading test(2400 kN).Soil pressures along pile increase due to surcharge load and uniform soil movement,and so do the shaft resistances along pile,as a result,when rebars in concrete piles are enough,bearing capacity of pile affected by soil displacement increases compared with that of pile in static loading test.展开更多
Although the dynamic properties of subgrade soils in seasonally frozen areas have already been studied, few researchers have considered the influence of shallow groundwater during the freeze–thaw(F–T) cycles. So a m...Although the dynamic properties of subgrade soils in seasonally frozen areas have already been studied, few researchers have considered the influence of shallow groundwater during the freeze–thaw(F–T) cycles. So a multifunctional F–T cycle system was developed to imitate the groundwater recharge in the subgrade during the freezing process and a large number of dynamic triaxial experiments were conducted after the F–T cycles. Some significant factors including the F–T cycle number, compaction degree, confining pressure, cyclic deviator stress, loading frequency, and water content were investigated for the resilient modulus of soils. The experimental results indicated that the dynamic resilient modulus of the subgrade was negatively correlated with the cyclic deviator stress, F–T cycle number, and initial water content, whereas the degree of compaction, confining pressure, and loading frequency could enhance the resilient modulus. Furthermore, a modified model considering the F–T cycle number and stress state was established to predict the dynamic resilient modulus. The calculated results of this modified model were very close to the experimental results. Consequently, calculation of the resilient modulus for F–T cycles considering the dynamic load was appropriate. This study provides reference for research focusing on F–T cycles with groundwater supply and the dynamic resilient moduli of subgrade soils in seasonally frozen areas.展开更多
Thin-walled tubes are increasingly used in automobile industries to improve structural safety.The present work deals with the collapse behavior of double-cell conical tubes subjected to dynamic axial and oblique loads...Thin-walled tubes are increasingly used in automobile industries to improve structural safety.The present work deals with the collapse behavior of double-cell conical tubes subjected to dynamic axial and oblique loads.Crashworthiness of these tubes having different sections(e.g.,circular,square,hexagonal,octagonal,decagonal)was numerically investigated by using an experimentally validated finite element model generated in LS-DYNA.Geometry of these tubes was then optimized by decreasing the cross section dimensions at the distal end while the weight remained unchanged.Octagonal conical tube was finally found to be more preferable to the others as a collision energy absorber.In addition,square and circular tubes showed diamond deformation mode,while the other tubes collapsed in concertina mode.A decision making method called TOPSIS was finally implemented on the numerical results to select the most efficient energy absorber.展开更多
The torsional vibration of power transmission shaft is a phenomenon whose analytical modeling can be represented by a differential equation of motion proposed by technical literature. The solutions of these equations ...The torsional vibration of power transmission shaft is a phenomenon whose analytical modeling can be represented by a differential equation of motion proposed by technical literature. The solutions of these equations need coefficients and parameters that, usually, must be experimentally estimated. This work uses a resistive electric SG (strain gage) to dynamically determine strains produced in the shaft due to harmonic oscillatory motion under multiaxial loading. This movement is simulated on a prototype specially developed for this purpose. It comprises a pulley attached to the end of a stepped cantilevered shaft, which is clamped at the opposite end. In this configuration, a cam generates a torque to the system, springs regulate the stiffness and the damping coefficient of the assembly, as well as they can be suitably adjusted to produce an underdamped condition. The main advantage, highlighted in this study, refers to a major simplification. Although the system under study shows multiple degrees of freedom (torsion and bending), the shape and the positioning of linking SGs with the resistor bridge (Wheatstone Bridge), allow "to evaluate the loading effects independently, as if only one degree of freedom of the system exists at a time domain. Strains graphs for two forms of cyclic torsional oscillation, analytical and experimental, were successfully generated.展开更多
According to the structure and stress trait of bearing bolts,a lateral-vibrationmechanics model was established for them,and the relation between lateral-vibration frequencyand axial load was analyzed;then,lateral-vib...According to the structure and stress trait of bearing bolts,a lateral-vibrationmechanics model was established for them,and the relation between lateral-vibration frequencyand axial load was analyzed;then,lateral-vibration trait of bearing bolts was studiedthrough laboratory simulation test.The results indicate that vibration frequency of boltsupport system increases as well as axial force,the detection on axial load of bolts can bemade by generating lateral vibration of bearing bolts.Theoretical and experimental researchresults show that frequency method is effective for detecting the axial force of boltsupport system.展开更多
This paper presents a wind tunnel experiment for the evaluation of energy performance and aerodynamic forces acting on a small straight-bladed vertical axis wind turbine(VAWT) depending on several values of tip speed ...This paper presents a wind tunnel experiment for the evaluation of energy performance and aerodynamic forces acting on a small straight-bladed vertical axis wind turbine(VAWT) depending on several values of tip speed ratio. In the present study, the wind turbine is a four-bladed VAWT. The test airfoil of blade is symmetry airfoil(NACA0021) with 32 pressure ports used for the pressure measurements on blade surface. Based on the pressure distributions which are acted on the surface of rotor blade measured during rotation by multiport pressure-scanner mounted on a hub, the power, tangential force, lift and drag coefficients which are obtained by pressure distribution are discussed as a function of azimuthally position. And then, the loads which are applied to the entire wind turbine are compared with the experiment data of pressure distribution. As a result, it is clarified that aerodynamic forces take maximum value when the blade is moving to upstream side, and become small and smooth at downstream side. The power and torque coefficients which are based on the pressure distribution are larger than that by torque meter.展开更多
A coordination control strategy is developed for 3-bearing swivel duct (3BSD) nozzles. A 3BSD nozzle's deflection angle and direction are changed through rotations of three revolute pairs. There is a nonlinear rela...A coordination control strategy is developed for 3-bearing swivel duct (3BSD) nozzles. A 3BSD nozzle's deflection angle and direction are changed through rotations of three revolute pairs. There is a nonlinear relationship between the deflection an- gle/direction and the rotation angles. The rotation speed of a revolute pair is limited by the power of the actuator. The moment of inertia and the aerodynamic load for each revolute pair are different and time-varying. A high-precision control system of 3BSD nozzles is required for applications on vertical and/or short take-off and landing (V/STOL) aircrafts. Difficulties of co- ordination control of 3BSD nozzles are distinct travel ranges, speed constraints, time^xarying dynamic models, and disturb- ances. The proposed control strategy is a combination of the characteristic model and tlF e dynamic control allocation method. A dynamic control allocation module is used as the coordination supervisor, which is aware of the kinematic model, the con- straints, and the dynamic models of the revolute pairs. Second-order characteristic models are used to represent the dynamic behavior of the revolute pairs. The gradient projection algorithm is modified for parameter estimation. A modified all-coefficient adaptive controller is developed to reject the disturbances. Experimental results of a scaled 3BSD nozzle indi- cate that the coordination control strategy is effective.展开更多
基金Project(51208071)supported by the National Natural Science Foundation of ChinaProject(2010CB732106)supported by the National Basic Research Program of China
文摘Effect of soil displacement on friction single pile in the cases of tunneling,surcharge load and uniform soil movement was discussed in details with finite element method.Lateral displacement of the pile caused by soil displacement reached about 90% of the total displacement,which means that P-Δ effect of axial load can be neglected.The maximum moment of pile decreased from 159 kN·m to 133 kN·m in the case of surcharge load when the axial load increased from 0 to the ultimate load.When deformation of pile caused by soil displacement is large,axial load applied on pile-head plays the role of reducing the maximum bending moment in concrete pile to some extent.When pile is on one side of the tunnel,soil displacements around the pile are all alike,which means that the soil pressures around the pile do not decrease during tunneling.Therefore,Q-s curve of the pile affected by tunneling is very close to that of pile in static loading test.Bearing capacities of piles influenced by surcharge load and uniform soil movement are 2480 kN and 2630 kN,respectively,which are a little greater than that of the pile in static loading test(2400 kN).Soil pressures along pile increase due to surcharge load and uniform soil movement,and so do the shaft resistances along pile,as a result,when rebars in concrete piles are enough,bearing capacity of pile affected by soil displacement increases compared with that of pile in static loading test.
基金Projects(41672312, 41972294) supported by the National Natural Science Foundation of ChinaProject(2017CFA056) supported by the Outstanding Youth Foundation of Hubei Province, ChinaProject(KFJ170104) supported by the Changsha University of Science & Technology via Open Fund of National Engineering Laboratory of Highway Maintenance Technology, China。
文摘Although the dynamic properties of subgrade soils in seasonally frozen areas have already been studied, few researchers have considered the influence of shallow groundwater during the freeze–thaw(F–T) cycles. So a multifunctional F–T cycle system was developed to imitate the groundwater recharge in the subgrade during the freezing process and a large number of dynamic triaxial experiments were conducted after the F–T cycles. Some significant factors including the F–T cycle number, compaction degree, confining pressure, cyclic deviator stress, loading frequency, and water content were investigated for the resilient modulus of soils. The experimental results indicated that the dynamic resilient modulus of the subgrade was negatively correlated with the cyclic deviator stress, F–T cycle number, and initial water content, whereas the degree of compaction, confining pressure, and loading frequency could enhance the resilient modulus. Furthermore, a modified model considering the F–T cycle number and stress state was established to predict the dynamic resilient modulus. The calculated results of this modified model were very close to the experimental results. Consequently, calculation of the resilient modulus for F–T cycles considering the dynamic load was appropriate. This study provides reference for research focusing on F–T cycles with groundwater supply and the dynamic resilient moduli of subgrade soils in seasonally frozen areas.
基金Project(660)supported by University of Mohaghegh Ardabili,Iran
文摘Thin-walled tubes are increasingly used in automobile industries to improve structural safety.The present work deals with the collapse behavior of double-cell conical tubes subjected to dynamic axial and oblique loads.Crashworthiness of these tubes having different sections(e.g.,circular,square,hexagonal,octagonal,decagonal)was numerically investigated by using an experimentally validated finite element model generated in LS-DYNA.Geometry of these tubes was then optimized by decreasing the cross section dimensions at the distal end while the weight remained unchanged.Octagonal conical tube was finally found to be more preferable to the others as a collision energy absorber.In addition,square and circular tubes showed diamond deformation mode,while the other tubes collapsed in concertina mode.A decision making method called TOPSIS was finally implemented on the numerical results to select the most efficient energy absorber.
文摘The torsional vibration of power transmission shaft is a phenomenon whose analytical modeling can be represented by a differential equation of motion proposed by technical literature. The solutions of these equations need coefficients and parameters that, usually, must be experimentally estimated. This work uses a resistive electric SG (strain gage) to dynamically determine strains produced in the shaft due to harmonic oscillatory motion under multiaxial loading. This movement is simulated on a prototype specially developed for this purpose. It comprises a pulley attached to the end of a stepped cantilevered shaft, which is clamped at the opposite end. In this configuration, a cam generates a torque to the system, springs regulate the stiffness and the damping coefficient of the assembly, as well as they can be suitably adjusted to produce an underdamped condition. The main advantage, highlighted in this study, refers to a major simplification. Although the system under study shows multiple degrees of freedom (torsion and bending), the shape and the positioning of linking SGs with the resistor bridge (Wheatstone Bridge), allow "to evaluate the loading effects independently, as if only one degree of freedom of the system exists at a time domain. Strains graphs for two forms of cyclic torsional oscillation, analytical and experimental, were successfully generated.
基金Supported by the National Natural Science Foundation of China(50674046)National Natural Science Important Foundation of China(50634050)National Basic Research Program of China(2007CB209400)
文摘According to the structure and stress trait of bearing bolts,a lateral-vibrationmechanics model was established for them,and the relation between lateral-vibration frequencyand axial load was analyzed;then,lateral-vibration trait of bearing bolts was studiedthrough laboratory simulation test.The results indicate that vibration frequency of boltsupport system increases as well as axial force,the detection on axial load of bolts can bemade by generating lateral vibration of bearing bolts.Theoretical and experimental researchresults show that frequency method is effective for detecting the axial force of boltsupport system.
文摘This paper presents a wind tunnel experiment for the evaluation of energy performance and aerodynamic forces acting on a small straight-bladed vertical axis wind turbine(VAWT) depending on several values of tip speed ratio. In the present study, the wind turbine is a four-bladed VAWT. The test airfoil of blade is symmetry airfoil(NACA0021) with 32 pressure ports used for the pressure measurements on blade surface. Based on the pressure distributions which are acted on the surface of rotor blade measured during rotation by multiport pressure-scanner mounted on a hub, the power, tangential force, lift and drag coefficients which are obtained by pressure distribution are discussed as a function of azimuthally position. And then, the loads which are applied to the entire wind turbine are compared with the experiment data of pressure distribution. As a result, it is clarified that aerodynamic forces take maximum value when the blade is moving to upstream side, and become small and smooth at downstream side. The power and torque coefficients which are based on the pressure distribution are larger than that by torque meter.
基金supported by the National Natural Science Foundation of China(Grant Nos.60974339,61104082)
文摘A coordination control strategy is developed for 3-bearing swivel duct (3BSD) nozzles. A 3BSD nozzle's deflection angle and direction are changed through rotations of three revolute pairs. There is a nonlinear relationship between the deflection an- gle/direction and the rotation angles. The rotation speed of a revolute pair is limited by the power of the actuator. The moment of inertia and the aerodynamic load for each revolute pair are different and time-varying. A high-precision control system of 3BSD nozzles is required for applications on vertical and/or short take-off and landing (V/STOL) aircrafts. Difficulties of co- ordination control of 3BSD nozzles are distinct travel ranges, speed constraints, time^xarying dynamic models, and disturb- ances. The proposed control strategy is a combination of the characteristic model and tlF e dynamic control allocation method. A dynamic control allocation module is used as the coordination supervisor, which is aware of the kinematic model, the con- straints, and the dynamic models of the revolute pairs. Second-order characteristic models are used to represent the dynamic behavior of the revolute pairs. The gradient projection algorithm is modified for parameter estimation. A modified all-coefficient adaptive controller is developed to reject the disturbances. Experimental results of a scaled 3BSD nozzle indi- cate that the coordination control strategy is effective.