This study aimed to elucidate the strength weakening effect of high static pre-stressed rocks subjected to low-frequency disturbances under uniaxial compression.Based on the uniaxial compressive strength(UCS)of granit...This study aimed to elucidate the strength weakening effect of high static pre-stressed rocks subjected to low-frequency disturbances under uniaxial compression.Based on the uniaxial compressive strength(UCS)of granite under static loading,70%,80%,and 90%of UCS were selected as the initial high static pre-stress(σ_(p)),and then the pre-stressed rock specimens were disturbed by sinusoidal stress with amplitudes of 30%,20%,and 10%of UCS under low-frequency frequencies(f)of 1,2,5,and 10 Hz,respectively.The results show that the rockburst failure of pre-stressed granite is caused by low-frequency disturbance,and the failure strength is much lower than UCS.When theσp or f is constant,the specimen strength gradually decreases as the f or σ_(p) increases.The experimental study illustrates the influence mechanism of the strength weakening effect of high static pre-stress rocks under low-frequency dynamic disturbance,that is,high static pre-stress is the premise and leading factor of rock strength weakening,while low-frequency dynamic disturbance induces rock failure and affects the strength weakening degree.展开更多
Heat pipe is always bent in the typical application of electronic heat dissipation at high heat flux,which greatly affects its heat transfer performance. The capillary limit of heat transport in the bent micro-grooved...Heat pipe is always bent in the typical application of electronic heat dissipation at high heat flux,which greatly affects its heat transfer performance. The capillary limit of heat transport in the bent micro-grooved heat pipes was analyzed in the vapor pressure drop,the liquid pressure drop and the interaction of the vapor with wick fluid. The bent heat pipes were fabricated and tested from the bending angle,the bending position and the bending radius. The results show that temperature difference and thermal resistance increase while the heat transfer capacity of the heat pipe decreases,with the increase of the bending angles and the bending position closer to the vapor section. However,the effects of bending radius can be ignored. The result agrees well with the predicted equations.展开更多
In the early 1990 s, the Foundation for Science and Technology of Rio Grande do Sul State(CIENTEC)developed a pioneering study in Brazil, related to the simultaneous mining of multiple coal seams.One of the activities...In the early 1990 s, the Foundation for Science and Technology of Rio Grande do Sul State(CIENTEC)developed a pioneering study in Brazil, related to the simultaneous mining of multiple coal seams.One of the activities included detailed studies on the geomechanical characterization of materials present in the Irapua coal seam, under exploitation in the A-Sangao Mine, located near the city of Criciuma-SC,within the South-Catarinense coalfield. The goal of the laboratory tests was to define the behavior of the uniaxial compressive strength of the Irapua coal seam and establish a first approximation for the in situ strength value of this coal seam, since existing knowledge is solely based on practical mining experience over the years. Large samples of the coal seam were collected, using special techniques to maintain the integrity of the material, and a set of 56 uniaxial compression tests in cubic specimens, with side length ranging from 4.5 to 31 cm, were conducted in laboratory. This paper describes the experimental techniques used in the assays, and also presents the uniaxial compression strength results obtained.Moreover, important aspects of this type of study are considered, highlighting the size effect for the carbonaceous bed and the estimation of in situ strength values for the Irapua coal seam.展开更多
In order to investigate the size effect and other effects on the stress-strain relationship of confined concrete, 42 specimens with different sizes and section shapes were placed under axial compression loading. Effec...In order to investigate the size effect and other effects on the stress-strain relationship of confined concrete, 42 specimens with different sizes and section shapes were placed under axial compression loading. Effects of key parameters such as size of specimens, tie configuration, transverse reinforcement ratio, and concrete cover were studied. The results show that for specimens with the same configuration and the same volumetric ratio of the transverse reinforcement, along with the increasing specimen size, the peak stress, peak strain and deformation of the post-peak show a down trend, however, the volumetric ratio of the transverse reinforcement is lowered, the decreasing of the peak stress is accelerated, but the decreasing of the deformation is slow down. For specimens with the same volumetric ratio but different configurations of transverse reinforcement, though the transverse reinforcement configuration becomes more complicated, the peak stress of the large size specimen does not improve more than that of the small size. However, the deformation occurs before the stress declines to 85% of peak stress, and the improvement with the grid pattern tie configuration is much greater due to size effect.展开更多
During well drilling process,original stress state of hard brittle shale will be changed due to stress redistribution and concentration,which leads to stress damage phenomenon around the borehole.Consequently,drilling...During well drilling process,original stress state of hard brittle shale will be changed due to stress redistribution and concentration,which leads to stress damage phenomenon around the borehole.Consequently,drilling fluid will invade into formation along the tiny cracks induced by stress damage,and then weaken the strength of hard brittle shale.Based on this problem,a theoretical model was set up to discuss damage level of shale under uniaxial compression tests using acoustic velocity data.And specifically,considering the coupled effect of stress damage and drilling fluid,the relationship between hard brittle shale strength and elapsed time was analyzed.展开更多
The numerical thermal mechanical simulation of radial forging process of steel H13 stepped shaft with GFM(Gesellschaft fur Fertigungstechnik und Maschinenbau) forging machine was carried out by three-dimensional finit...The numerical thermal mechanical simulation of radial forging process of steel H13 stepped shaft with GFM(Gesellschaft fur Fertigungstechnik und Maschinenbau) forging machine was carried out by three-dimensional finite element code DEFORM 3D.According to the effective plastic strain,the mean stress and the mean plastic strain distribution of the radial forging,the forging penetration efficiency(FPE) was studied throughout each operation.The results show that the effective plastic strain in the center of the forging is always greater than zero for the desirable larger axial drawing velocity.The mean stress in the center of the workpiece is proposed to describe hydrostatic pressure in this paper.There is compressive strain layer beneath the surface of the workpiece to be found,while there is tensile strain core in the center of the workpiece.These results could be a valuable reference for designing the similar forging operations.展开更多
基金financially supported by the National Natural Science Foundation of China (No.42077244)the Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences (No.Z020005)the Fundamental Research Funds for the Central Universities of Southeast University,China (No.2242021R10080)。
文摘This study aimed to elucidate the strength weakening effect of high static pre-stressed rocks subjected to low-frequency disturbances under uniaxial compression.Based on the uniaxial compressive strength(UCS)of granite under static loading,70%,80%,and 90%of UCS were selected as the initial high static pre-stress(σ_(p)),and then the pre-stressed rock specimens were disturbed by sinusoidal stress with amplitudes of 30%,20%,and 10%of UCS under low-frequency frequencies(f)of 1,2,5,and 10 Hz,respectively.The results show that the rockburst failure of pre-stressed granite is caused by low-frequency disturbance,and the failure strength is much lower than UCS.When theσp or f is constant,the specimen strength gradually decreases as the f or σ_(p) increases.The experimental study illustrates the influence mechanism of the strength weakening effect of high static pre-stress rocks under low-frequency dynamic disturbance,that is,high static pre-stress is the premise and leading factor of rock strength weakening,while low-frequency dynamic disturbance induces rock failure and affects the strength weakening degree.
基金Project(U0834002) supported by the Joint Funds of the National Nature Science Foundation of China and Guangdong ProvinceProject (2009ZM0134) supported by the Foundational Research Funds for the Central Universities in China
文摘Heat pipe is always bent in the typical application of electronic heat dissipation at high heat flux,which greatly affects its heat transfer performance. The capillary limit of heat transport in the bent micro-grooved heat pipes was analyzed in the vapor pressure drop,the liquid pressure drop and the interaction of the vapor with wick fluid. The bent heat pipes were fabricated and tested from the bending angle,the bending position and the bending radius. The results show that temperature difference and thermal resistance increase while the heat transfer capacity of the heat pipe decreases,with the increase of the bending angles and the bending position closer to the vapor section. However,the effects of bending radius can be ignored. The result agrees well with the predicted equations.
文摘In the early 1990 s, the Foundation for Science and Technology of Rio Grande do Sul State(CIENTEC)developed a pioneering study in Brazil, related to the simultaneous mining of multiple coal seams.One of the activities included detailed studies on the geomechanical characterization of materials present in the Irapua coal seam, under exploitation in the A-Sangao Mine, located near the city of Criciuma-SC,within the South-Catarinense coalfield. The goal of the laboratory tests was to define the behavior of the uniaxial compressive strength of the Irapua coal seam and establish a first approximation for the in situ strength value of this coal seam, since existing knowledge is solely based on practical mining experience over the years. Large samples of the coal seam were collected, using special techniques to maintain the integrity of the material, and a set of 56 uniaxial compression tests in cubic specimens, with side length ranging from 4.5 to 31 cm, were conducted in laboratory. This paper describes the experimental techniques used in the assays, and also presents the uniaxial compression strength results obtained.Moreover, important aspects of this type of study are considered, highlighting the size effect for the carbonaceous bed and the estimation of in situ strength values for the Irapua coal seam.
基金Project(50838001) supported by the National Natural Science Foundation of China
文摘In order to investigate the size effect and other effects on the stress-strain relationship of confined concrete, 42 specimens with different sizes and section shapes were placed under axial compression loading. Effects of key parameters such as size of specimens, tie configuration, transverse reinforcement ratio, and concrete cover were studied. The results show that for specimens with the same configuration and the same volumetric ratio of the transverse reinforcement, along with the increasing specimen size, the peak stress, peak strain and deformation of the post-peak show a down trend, however, the volumetric ratio of the transverse reinforcement is lowered, the decreasing of the peak stress is accelerated, but the decreasing of the deformation is slow down. For specimens with the same volumetric ratio but different configurations of transverse reinforcement, though the transverse reinforcement configuration becomes more complicated, the peak stress of the large size specimen does not improve more than that of the small size. However, the deformation occurs before the stress declines to 85% of peak stress, and the improvement with the grid pattern tie configuration is much greater due to size effect.
基金Project(U262201)supported by National Natural Science Foundation of China
文摘During well drilling process,original stress state of hard brittle shale will be changed due to stress redistribution and concentration,which leads to stress damage phenomenon around the borehole.Consequently,drilling fluid will invade into formation along the tiny cracks induced by stress damage,and then weaken the strength of hard brittle shale.Based on this problem,a theoretical model was set up to discuss damage level of shale under uniaxial compression tests using acoustic velocity data.And specifically,considering the coupled effect of stress damage and drilling fluid,the relationship between hard brittle shale strength and elapsed time was analyzed.
文摘The numerical thermal mechanical simulation of radial forging process of steel H13 stepped shaft with GFM(Gesellschaft fur Fertigungstechnik und Maschinenbau) forging machine was carried out by three-dimensional finite element code DEFORM 3D.According to the effective plastic strain,the mean stress and the mean plastic strain distribution of the radial forging,the forging penetration efficiency(FPE) was studied throughout each operation.The results show that the effective plastic strain in the center of the forging is always greater than zero for the desirable larger axial drawing velocity.The mean stress in the center of the workpiece is proposed to describe hydrostatic pressure in this paper.There is compressive strain layer beneath the surface of the workpiece to be found,while there is tensile strain core in the center of the workpiece.These results could be a valuable reference for designing the similar forging operations.