Numerical investigation is conducted on a 3.5-stage axial compressor,on which numerous experimental projects were carried out at the Institute during the last years and an experimental database was established.In the ...Numerical investigation is conducted on a 3.5-stage axial compressor,on which numerous experimental projects were carried out at the Institute during the last years and an experimental database was established.In the current study five on-and off-design operating points are simulated using a RANS solver and the results are compared with the measurement.The result shows that the compressor performance can be qualitatively predicted by the mixing-plane method.Better agreement is obtained for the on-design operating point.However,as the flow unsteadiness is insufficiently considered,the numerical method produces end-wall low-speed flow layers accumulated with the flow passing through the passage,which is in no good agreement with the experimental data.In the numerical simulation the rotor rows receive less work and this difference from the measurement increases with the rotational speed.In contrast,the stator rows increase the pressure more efficiently than the measurement.In the simulation the flow in the last stator row tends more to separate on the pressure side of the blade.For the operating points close to the surge line,the predicted separation is more intense than the experimental observation.But for the operating points close to the choke,the separation is suppressed.展开更多
Lots of field investigations have proven that layer-crack structure usually appears during the excavation process of deep rock or coal mass.To provide experimental data for studying the formation mechanism of layer-cr...Lots of field investigations have proven that layer-crack structure usually appears during the excavation process of deep rock or coal mass.To provide experimental data for studying the formation mechanism of layer-crack structure,this study researches the influence of lateral pressure on the mechanical behavior of different rock types.Four rock types have been tested and the formation mechanism of macro-fracture surface is analyzed.Results indicate that the brittleness and burst proneness of rock or coal material are stronger than that of gypsum material due to the different mineral compositions and structures.When the lateral pressure is less than 10%uniaxial strength,the peak stress and elastic modulus increase with the increase of lateral pressure;but when the lateral pressure is larger than 10%uniaxial strength,the two parameters decrease slightly or keep steady.This is because when the lateral pressure reaches a certain value,local failure will be formed during the process of applying lateral pressure.Under the condition of low lateral pressure,the failure of the specimen is dominated by the tensile mechanism;under the condition of relatively high lateral pressure,the area of the specimen close to the free surface is tensile splitting failure,and the area far from the free surface is shear failure.展开更多
Based on the theory developed by Moors and Greitzer, a new simplifying approximation, which takesinto account the influence of higher harmonics of rotating waves, is proposed in this paper to get a simplified model of...Based on the theory developed by Moors and Greitzer, a new simplifying approximation, which takesinto account the influence of higher harmonics of rotating waves, is proposed in this paper to get a simplified model of post stall transients in axial compression systems. This approximation leads to a set ofthree simultaneous nonlinear first order partial differential equations. The further investigation of poststall behavior for different response modes of instabilities (rotating stall and/or surge), recoverability,prestall period during stall inception, and the effect of compression system parameters on them canbe carried out by this model and has been discussed in detail in the present paper. It has been foundthat stall inception exhibits a large prestall period in the region with small slope of compressor characteristic, and in this region, final throttle setting, compressor characteristic and time-lag parametershave a strong influence on the period. The inertia parameters of blade rows have a strong influenceon the recoverability of compression systems and the blockage of stall cell at recovery point. Somequalitative comparisons with available experimental results and experience are made, and it shows thatthe proposed model is very simple and reliable.展开更多
The paper investigates effects of operating conditions, tip clearance sizes and external unsteady excitations on the unsteady tip clearance flow in an isolated axial compressor rotor by unsteady 3D Navier-Stokes simul...The paper investigates effects of operating conditions, tip clearance sizes and external unsteady excitations on the unsteady tip clearance flow in an isolated axial compressor rotor by unsteady 3D Navier-Stokes simulations. The results show that the unsteady tip clearance vortex takes a periodic flow behavior in the rotor tip region. With the decrease of the flow coefficient, the unsteady tip clearance vortex is enhanced and its frequency becomes lower. A larger tip clearance size can cause bigger unsteady fluctuation amplitude and a lower fluctuation frequency of the tip clearance vortex at the near stall operating condition. The unsteady excitation with the natural frequency of the tip clearance vortex can enhance the unsteadiness of the tip clearance vortex and improve the overall rotor performance. The frequency of the unsteady tip clearance vortex is independent of external unsteady excitations with different frequencies.展开更多
A mathematical model is developed for the flow field diagnosis problem in multistage axial compressors. In view of the ill-posedness of the diagnostic problem, an effective measure is adopted to transfer the diagnosti...A mathematical model is developed for the flow field diagnosis problem in multistage axial compressors. In view of the ill-posedness of the diagnostic problem, an effective measure is adopted to transfer the diagnostic problem into a variational problem which is solved by a regularization method. Two numerical results demonstrate the rationality of the flow field diagnosis Problem and the effectiveness of the computational method.展开更多
A basic equation system for meridional throughflow fields in multistage axial flow compressors has been deduced, containing many unknown correlation terms,which describe different kinds of spanwise mixing mechanism in...A basic equation system for meridional throughflow fields in multistage axial flow compressors has been deduced, containing many unknown correlation terms,which describe different kinds of spanwise mixing mechanism in a unified form.The equation system shows that spanwise mixing of meridional flows in compressors is attributed to three kinds of mechanism:molecular motion,turbulent diffusion,and circumferential non-uniformities,the last of which includes secondary flow effects and others.Therefore the equation system unifies the two models for spanwise mixing analyses by Adkins & Smith (1981) and Gallimore & Cumpsty (1986).With three kinds of apparent mixing coefficients defined and introduced into the basic equation system,a novel,much simpler equation system,without additional unknown correlation terms included,has been obtained.This novel equa- tion system makes throughflow computations including mixing far easier for multistage compressors.It has been rigorously shown that these apparent mixing coefficients contain full information of all the three kinds of mixing mechanism,so that the simpler equation system can also be taken as a unified model for meridional flows with all the kinds of the mixing effects.Calculations of the flow through multistage machines have been made by incorporating the new model into a streamline curvature throughflow calculation method and the improved agreement with experimental data has been obtained.It is believed that the simpler equation system can be applied to the flows not only in subsonic but in transonic and supersonic compressors if an appropriate model is proposed for the apparent mixing coefficients.展开更多
The aim of this paper is to discuss a method of the compromise region determination for the multistage axial flow compressor stochastic optimization problems. This method is based on the 2-D axisynunetrical mathematic...The aim of this paper is to discuss a method of the compromise region determination for the multistage axial flow compressor stochastic optimization problems. This method is based on the 2-D axisynunetrical mathematical model of the compressor and on the new multicriteria optimization procedure.A specific feature of the multicriteria optimization procedure is a possibility to obtain a set of the Edgeworth-Pareto optimal solutions within the frame of single optimization task. The paper presents some examples of the compressor’s geometrical parameters multicriteria optimization.展开更多
The superimposed influences of the blade rows in a multistage compressor are important because different matches of upstream and downstream blades can result in significant differences in the stator wake oscillation. ...The superimposed influences of the blade rows in a multistage compressor are important because different matches of upstream and downstream blades can result in significant differences in the stator wake oscillation. Numerical investigation of the axial stator wake oscillation, which is affected upstream by the axial rotor and downstream by the radial rotor, was performed in an axial-radial combined compressor. Many configurations with different blade numbers and locations, which influence axial stator wake oscillation were investigated. When rotors have equal blade numbers, the axial stator wake oscillates periodically versus time within time T(moving blade passing 1/3 revolution). In contrast, stator wake oscillates irregularly within T when rotors have different blade numbers. A model-split subtraction method is presented in order to separate the influences of the individual blade rows on the wake oscillation of the axial stator. Analysis from the rotor-stator configuration showed that the unsteady flow angle fluctuation response is caused by the upstream rotor. For the rotor-stator-rotor configuration, the unsteady flow angle fluctuations are influenced by upand downstream blade rows. With the model-split subtraction method, the upand downstream influences on the flow angle fluctuation could be clearly separated and quantified. Low amplitudes could be observed when the influences from upand downstream moving rows were superimposed with the "positive peaknegative peak" type wave. Clocking investigations were carried out to change the relative superimposed phase of influences from the surrounding blade rows in order to modulate the amplitudes of the axial stator wake oscillation. However, the amplitudes did not reach the maximum when they were superimposed with "positive peak-positive peak" type wave due to the impact of the interaction between the two moving blade rows.展开更多
文摘Numerical investigation is conducted on a 3.5-stage axial compressor,on which numerous experimental projects were carried out at the Institute during the last years and an experimental database was established.In the current study five on-and off-design operating points are simulated using a RANS solver and the results are compared with the measurement.The result shows that the compressor performance can be qualitatively predicted by the mixing-plane method.Better agreement is obtained for the on-design operating point.However,as the flow unsteadiness is insufficiently considered,the numerical method produces end-wall low-speed flow layers accumulated with the flow passing through the passage,which is in no good agreement with the experimental data.In the numerical simulation the rotor rows receive less work and this difference from the measurement increases with the rotational speed.In contrast,the stator rows increase the pressure more efficiently than the measurement.In the simulation the flow in the last stator row tends more to separate on the pressure side of the blade.For the operating points close to the surge line,the predicted separation is more intense than the experimental observation.But for the operating points close to the choke,the separation is suppressed.
基金Project(51904165)supported by the National Natural Science Foundation of ChinaProject(ZR2019QEE026)supported by the Shandong Provincial Natural Science Foundation,ChinaProject(ZR2019ZD13)supported by the Major Program of Shandong Provincial Natural Science Foundation,China。
文摘Lots of field investigations have proven that layer-crack structure usually appears during the excavation process of deep rock or coal mass.To provide experimental data for studying the formation mechanism of layer-crack structure,this study researches the influence of lateral pressure on the mechanical behavior of different rock types.Four rock types have been tested and the formation mechanism of macro-fracture surface is analyzed.Results indicate that the brittleness and burst proneness of rock or coal material are stronger than that of gypsum material due to the different mineral compositions and structures.When the lateral pressure is less than 10%uniaxial strength,the peak stress and elastic modulus increase with the increase of lateral pressure;but when the lateral pressure is larger than 10%uniaxial strength,the two parameters decrease slightly or keep steady.This is because when the lateral pressure reaches a certain value,local failure will be formed during the process of applying lateral pressure.Under the condition of low lateral pressure,the failure of the specimen is dominated by the tensile mechanism;under the condition of relatively high lateral pressure,the area of the specimen close to the free surface is tensile splitting failure,and the area far from the free surface is shear failure.
文摘Based on the theory developed by Moors and Greitzer, a new simplifying approximation, which takesinto account the influence of higher harmonics of rotating waves, is proposed in this paper to get a simplified model of post stall transients in axial compression systems. This approximation leads to a set ofthree simultaneous nonlinear first order partial differential equations. The further investigation of poststall behavior for different response modes of instabilities (rotating stall and/or surge), recoverability,prestall period during stall inception, and the effect of compression system parameters on them canbe carried out by this model and has been discussed in detail in the present paper. It has been foundthat stall inception exhibits a large prestall period in the region with small slope of compressor characteristic, and in this region, final throttle setting, compressor characteristic and time-lag parametershave a strong influence on the period. The inertia parameters of blade rows have a strong influenceon the recoverability of compression systems and the blockage of stall cell at recovery point. Somequalitative comparisons with available experimental results and experience are made, and it shows thatthe proposed model is very simple and reliable.
文摘The paper investigates effects of operating conditions, tip clearance sizes and external unsteady excitations on the unsteady tip clearance flow in an isolated axial compressor rotor by unsteady 3D Navier-Stokes simulations. The results show that the unsteady tip clearance vortex takes a periodic flow behavior in the rotor tip region. With the decrease of the flow coefficient, the unsteady tip clearance vortex is enhanced and its frequency becomes lower. A larger tip clearance size can cause bigger unsteady fluctuation amplitude and a lower fluctuation frequency of the tip clearance vortex at the near stall operating condition. The unsteady excitation with the natural frequency of the tip clearance vortex can enhance the unsteadiness of the tip clearance vortex and improve the overall rotor performance. The frequency of the unsteady tip clearance vortex is independent of external unsteady excitations with different frequencies.
文摘A mathematical model is developed for the flow field diagnosis problem in multistage axial compressors. In view of the ill-posedness of the diagnostic problem, an effective measure is adopted to transfer the diagnostic problem into a variational problem which is solved by a regularization method. Two numerical results demonstrate the rationality of the flow field diagnosis Problem and the effectiveness of the computational method.
文摘A basic equation system for meridional throughflow fields in multistage axial flow compressors has been deduced, containing many unknown correlation terms,which describe different kinds of spanwise mixing mechanism in a unified form.The equation system shows that spanwise mixing of meridional flows in compressors is attributed to three kinds of mechanism:molecular motion,turbulent diffusion,and circumferential non-uniformities,the last of which includes secondary flow effects and others.Therefore the equation system unifies the two models for spanwise mixing analyses by Adkins & Smith (1981) and Gallimore & Cumpsty (1986).With three kinds of apparent mixing coefficients defined and introduced into the basic equation system,a novel,much simpler equation system,without additional unknown correlation terms included,has been obtained.This novel equa- tion system makes throughflow computations including mixing far easier for multistage compressors.It has been rigorously shown that these apparent mixing coefficients contain full information of all the three kinds of mixing mechanism,so that the simpler equation system can also be taken as a unified model for meridional flows with all the kinds of the mixing effects.Calculations of the flow through multistage machines have been made by incorporating the new model into a streamline curvature throughflow calculation method and the improved agreement with experimental data has been obtained.It is believed that the simpler equation system can be applied to the flows not only in subsonic but in transonic and supersonic compressors if an appropriate model is proposed for the apparent mixing coefficients.
文摘The aim of this paper is to discuss a method of the compromise region determination for the multistage axial flow compressor stochastic optimization problems. This method is based on the 2-D axisynunetrical mathematical model of the compressor and on the new multicriteria optimization procedure.A specific feature of the multicriteria optimization procedure is a possibility to obtain a set of the Edgeworth-Pareto optimal solutions within the frame of single optimization task. The paper presents some examples of the compressor’s geometrical parameters multicriteria optimization.
基金Financially supported by National Natural Science Foundation of China(No.51176013)Chinese Specialized Research Fund for the Doctoral Program of Higher Education(No.20091101110014)
文摘The superimposed influences of the blade rows in a multistage compressor are important because different matches of upstream and downstream blades can result in significant differences in the stator wake oscillation. Numerical investigation of the axial stator wake oscillation, which is affected upstream by the axial rotor and downstream by the radial rotor, was performed in an axial-radial combined compressor. Many configurations with different blade numbers and locations, which influence axial stator wake oscillation were investigated. When rotors have equal blade numbers, the axial stator wake oscillates periodically versus time within time T(moving blade passing 1/3 revolution). In contrast, stator wake oscillates irregularly within T when rotors have different blade numbers. A model-split subtraction method is presented in order to separate the influences of the individual blade rows on the wake oscillation of the axial stator. Analysis from the rotor-stator configuration showed that the unsteady flow angle fluctuation response is caused by the upstream rotor. For the rotor-stator-rotor configuration, the unsteady flow angle fluctuations are influenced by upand downstream blade rows. With the model-split subtraction method, the upand downstream influences on the flow angle fluctuation could be clearly separated and quantified. Low amplitudes could be observed when the influences from upand downstream moving rows were superimposed with the "positive peaknegative peak" type wave. Clocking investigations were carried out to change the relative superimposed phase of influences from the surrounding blade rows in order to modulate the amplitudes of the axial stator wake oscillation. However, the amplitudes did not reach the maximum when they were superimposed with "positive peak-positive peak" type wave due to the impact of the interaction between the two moving blade rows.