This paper introduces to fluid state physics (fluid mechanics) a new interpretation of physical phenomena taking place in a fluid in motion. It introduces the base of a new theory claiming that every flow has its ow...This paper introduces to fluid state physics (fluid mechanics) a new interpretation of physical phenomena taking place in a fluid in motion. It introduces the base of a new theory claiming that every flow has its own internal structure of motion, which is definite organization of motion, rather than a "molecular chaos", known from the fluid statics. The paper introduces the new notion of structures vector fields of power and momentum and shows every Newtonian fluid flows are dual in character. It shows that the flow of Newtonian fluid has a dual character. It demonstrates on models and further in mathematical interpretation of physical phenomena. It introduces, on the one hand, the cycloidal motion model into the fluid mechanics, ad on the other hand an addition to the known, the classical model of Poiseuille laminar motion. The theory of dualism (double nature of physical phenomena) allows the description of selected characteristics of the flow, either by using the theory ofcycloidal motion (semicycloidal), or by using the supplemented theory of laminar motion. The dualism theory is useful to describe each type of flows both, laminar and turbulent. This paper is only an introduction to the theory. It has been assigned number 1. It has been granted a high priority, since it contains basic concepts that will be used in others, following papers of long cycle.展开更多
The Random Vortex Method extended to an azisymmetrical flow is used in the study of the flow field inside pipes incorporating an orifice plate with different contraction ratios and different inlet velocity profiles. T...The Random Vortex Method extended to an azisymmetrical flow is used in the study of the flow field inside pipes incorporating an orifice plate with different contraction ratios and different inlet velocity profiles. Three test-cases, each having experimental measurements available in the literature, are studied. In particular, instantaneous and average velocity fields along with the turbulent statistics for high Reynolds number flows are computed and compared to the corresponding experimental results.These comparisons show the ability and the citations of the method. The results of the numerical simulations are used in the physical analysis of the flow fields and thus allow for a better understanding of the dynamics of the flow in pipes incorporating an orifice plate.展开更多
文摘This paper introduces to fluid state physics (fluid mechanics) a new interpretation of physical phenomena taking place in a fluid in motion. It introduces the base of a new theory claiming that every flow has its own internal structure of motion, which is definite organization of motion, rather than a "molecular chaos", known from the fluid statics. The paper introduces the new notion of structures vector fields of power and momentum and shows every Newtonian fluid flows are dual in character. It shows that the flow of Newtonian fluid has a dual character. It demonstrates on models and further in mathematical interpretation of physical phenomena. It introduces, on the one hand, the cycloidal motion model into the fluid mechanics, ad on the other hand an addition to the known, the classical model of Poiseuille laminar motion. The theory of dualism (double nature of physical phenomena) allows the description of selected characteristics of the flow, either by using the theory ofcycloidal motion (semicycloidal), or by using the supplemented theory of laminar motion. The dualism theory is useful to describe each type of flows both, laminar and turbulent. This paper is only an introduction to the theory. It has been assigned number 1. It has been granted a high priority, since it contains basic concepts that will be used in others, following papers of long cycle.
文摘The Random Vortex Method extended to an azisymmetrical flow is used in the study of the flow field inside pipes incorporating an orifice plate with different contraction ratios and different inlet velocity profiles. Three test-cases, each having experimental measurements available in the literature, are studied. In particular, instantaneous and average velocity fields along with the turbulent statistics for high Reynolds number flows are computed and compared to the corresponding experimental results.These comparisons show the ability and the citations of the method. The results of the numerical simulations are used in the physical analysis of the flow fields and thus allow for a better understanding of the dynamics of the flow in pipes incorporating an orifice plate.