In the framework of parallelism general relativity, the torsion axial-vector in the rotating gravitational field is studied in terms of the alternative Kerr tetrad. In thecase of the weak field and slow rotation appro...In the framework of parallelism general relativity, the torsion axial-vector in the rotating gravitational field is studied in terms of the alternative Kerr tetrad. In thecase of the weak field and slow rotation approximation, we obtain that the torsion axial-vector possesses the dipole-like structure. Furthermore, the effect of massive neutrino spin precession in this field is mentioned.展开更多
The changes of stress and strain around the shaft under the non-axial symmetrical loads during the excavation are analyzed with the finite element semi-analytical method based on the separated variable method. The cha...The changes of stress and strain around the shaft under the non-axial symmetrical loads during the excavation are analyzed with the finite element semi-analytical method based on the separated variable method. The change laws of deformation and stress of surrounding rocks are obtaied. Moreover, an optimum method of the design and construction of the shaft lining is de veloped. which presents a new train of thought of the design and costruction of the shaft and has important theoretical value and extensive application prospects.展开更多
文摘In the framework of parallelism general relativity, the torsion axial-vector in the rotating gravitational field is studied in terms of the alternative Kerr tetrad. In thecase of the weak field and slow rotation approximation, we obtain that the torsion axial-vector possesses the dipole-like structure. Furthermore, the effect of massive neutrino spin precession in this field is mentioned.
文摘The changes of stress and strain around the shaft under the non-axial symmetrical loads during the excavation are analyzed with the finite element semi-analytical method based on the separated variable method. The change laws of deformation and stress of surrounding rocks are obtaied. Moreover, an optimum method of the design and construction of the shaft lining is de veloped. which presents a new train of thought of the design and costruction of the shaft and has important theoretical value and extensive application prospects.