The results of investigations of compressed reinforced masonry walls subjected to axial compression are presented. Tests were carried out using specimens made of clay bricks and cement-lime mortar. As reinforcement, s...The results of investigations of compressed reinforced masonry walls subjected to axial compression are presented. Tests were carried out using specimens made of clay bricks and cement-lime mortar. As reinforcement, smooth and spiral twisted longitudinal rods, two types of structural wire mesh and truss type reinforcement were used. Two percentages of bed joint reinforcement, about 0.1% and 0.05% were applied. For each type of reinforcement, three masonry walls were tested. Additionally, nine unreinforced models were also tested. The main aim of the investigations presented is to determine the effect of different types of reinforcement on the load capacity and failure. Measurement of the strains of reinforcing bars permitted the recording of the strain level at the moment of crack appearance and also at the moment of failure.展开更多
The influences of subsurface cracks,distributing along the axial direction,on the rolling contact fatigue(RCF)faliure in a bearing ring are investigated.A realistic three-dimensional model of the bearing ring containi...The influences of subsurface cracks,distributing along the axial direction,on the rolling contact fatigue(RCF)faliure in a bearing ring are investigated.A realistic three-dimensional model of the bearing ring containing three subsurface cracks is used to evaluate the fatigue crack propagation based on stress intensity factor(SIF)calculations.Moreover,the distributions of the subsurface cracks along the axial direction are varied to study their effects on RCF.The results provide valuable guidelines for enhanced understanding of RCF in bearings.展开更多
文摘The results of investigations of compressed reinforced masonry walls subjected to axial compression are presented. Tests were carried out using specimens made of clay bricks and cement-lime mortar. As reinforcement, smooth and spiral twisted longitudinal rods, two types of structural wire mesh and truss type reinforcement were used. Two percentages of bed joint reinforcement, about 0.1% and 0.05% were applied. For each type of reinforcement, three masonry walls were tested. Additionally, nine unreinforced models were also tested. The main aim of the investigations presented is to determine the effect of different types of reinforcement on the load capacity and failure. Measurement of the strains of reinforcing bars permitted the recording of the strain level at the moment of crack appearance and also at the moment of failure.
基金supported by the National Basic Research Program of China(Grant No.2011CB706605)State Key Program of National Natural Science Foundation of China(Grant No.51135007)+1 种基金Innovative Research Groups of the National Natural Science Foundation of Hubei Province(Grant No.2011CDA12)the Fundamental Research Funds for the Central Universities(Grant Nos.2012-Ia-017,2013-IV-014)for the support given to this research
文摘The influences of subsurface cracks,distributing along the axial direction,on the rolling contact fatigue(RCF)faliure in a bearing ring are investigated.A realistic three-dimensional model of the bearing ring containing three subsurface cracks is used to evaluate the fatigue crack propagation based on stress intensity factor(SIF)calculations.Moreover,the distributions of the subsurface cracks along the axial direction are varied to study their effects on RCF.The results provide valuable guidelines for enhanced understanding of RCF in bearings.