In recent years,a new type of foundation named composite piled raft foundation (also called long short composite piled raft) has been developed.Where designing shallow foundations would mean unacceptable settlement,or...In recent years,a new type of foundation named composite piled raft foundation (also called long short composite piled raft) has been developed.Where designing shallow foundations would mean unacceptable settlement,or other environmental risks exist which could impair the structure in the future,composite piled raft foundations could be used.Finite element method was applied to study the behavior of this type of foundation subjected to vertical loading.In order to determine an optimal pile arrangement pattern which yields the minimum settlement,various pile arrangements under different vertical stress levels were investigated.Results show that with increasing the vertical stress on the raft,the effectiveness of the arrangements of short and long piles become more visible.In addition,a new factor named "composite piled raft efficiency" (CPRE) has been defined which determines the efficiency of long short piles arrangement in a composite piled raft foundation.This factor will increase when short piles take more axial stresses and long piles take less axial stresses.In addition,it is found that the changes in settlements for different long short piles arrangement are in a well agreement with changes in values of CPRE ratio.Thus,CPRE ratio can be used as a factor to determine the efficiency of piles arrangements in composite piled raft foundation from the view point of reducing raft settlements.展开更多
One-dimensional pseudo-homogeneous model of an axial flow converter and one-dimensional heteroge-neous model of a horizontal converter have been presented, which describe the distribution of gaseous composition,temper...One-dimensional pseudo-homogeneous model of an axial flow converter and one-dimensional heteroge-neous model of a horizontal converter have been presented, which describe the distribution of gaseous composition,temperature and pressure along the height in the two converters, respectively. Design optimization methods of the two converters have been proposed, by which the minimum catalyst volume can be obtained to satisfy the productive capacity of 1000 tons per day, when the operating pressure is 15.0, 10.0 and 7.5 MPa, respectively.展开更多
Objective: To investigate the allocation and management of large medical equipment (LME) in Xuzhou, Jiangsu Province, China, in order to make the best use of LME to meet the medical needs of local people. Methods: The...Objective: To investigate the allocation and management of large medical equipment (LME) in Xuzhou, Jiangsu Province, China, in order to make the best use of LME to meet the medical needs of local people. Methods: The research collected data from all hospitals that have LME in Xuzhou using questionnaire; 38 (97.4%) hospitals returned the questionnaire. Results: In Xuzhou, there are a total of 71 pieces of LME, each serving 126 600 people in an area of 163 km2. Sixty-two percent of them are allocated in urban areas, with Gini coefficient at 0.52, indicating imbalance and biased allocation of LME. Conclusion: The al- location of LME in Xuzhou is out of control and unfairly allocated.展开更多
In this paper, a novel design method, which is different from the traditional and empirical one (i. e., taking p and pv as the basic checking parameters) is presented for the fatigue strength design of dynamically loa...In this paper, a novel design method, which is different from the traditional and empirical one (i. e., taking p and pv as the basic checking parameters) is presented for the fatigue strength design of dynamically loaded journal bearings. The method makes it possible that dynamically loaded bearings can be desed as same as other machine elements by stress-strength criterion. The practical design results show that the method has high accuracy and reliability, and may open a new visa in bearing fatigue designs.展开更多
This paper presents the design assessment of concrete encased I-sections composite column based approaches given in Eurocode, ACI Code, BS Code and AISC-LRFD. This study includes comparison of various design parameter...This paper presents the design assessment of concrete encased I-sections composite column based approaches given in Eurocode, ACI Code, BS Code and AISC-LRFD. This study includes comparison of various design parameters and evaluation of design strength based on the procedures predicted in the various codes of practices. A practical example has been assumed and calculation has been shown to evaluate their potentiality in understanding in predicting the potentiality of various procedures. The obtained results based on the methods varies widely, because of the different design considerations adopted by the different codes. As such, they have hardly considered the effect of confinement of the concrete due to the presence of longitudinal reinforcements as well as lateral ties. The study has attempted to throw light on critical review and their potentiality in assessing the strength of such concrete encased composite column under purely axial loads.展开更多
To study the behavior and design of tubed circular steel reinforced concrete (TCSRC) short column under axial compressive loads, a nonlinear finite element model (FEM) has been developed to simulate this kind of struc...To study the behavior and design of tubed circular steel reinforced concrete (TCSRC) short column under axial compressive loads, a nonlinear finite element model (FEM) has been developed to simulate this kind of structure. Depending on the FEM results, an elastic-plastic analysis was carried out to clarify the status of steel tube, then a simplified procedure was proposed to predict the compressive axial load strength. The results obtained from this procedure were compared with the test results. It is found that they agree well each other.展开更多
The objective of this investigation was to study the behavior of deep pile caps and the ultimate load-carrying capacity. Four 1/10 scaled models of nine-pile caps were cast and tested on vertical loads to failure. The...The objective of this investigation was to study the behavior of deep pile caps and the ultimate load-carrying capacity. Four 1/10 scaled models of nine-pile caps were cast and tested on vertical loads to failure. The destruction shapes of pile caps,the correlation between load and displacement,and the internal stresses were analyzed systematically. The results demonstrated that the failures of all the four models are resulted from punching shear; the internal flow of the forces in nine-pile caps can be approximated by "strut-and-tie" model. Furthermore,the failure loads of these specimens were predicted by some of the present design methods and the calculated results were compared with the experimental loads. The comparative results also indicated that the "strut-and-tie" model is a more reasonable design method for deep pile caps design.展开更多
In assemblies constructed from components manufactured with radial deviations, cross-section deviations and deviations being combination of both, there occur variable values of local stresses and displacements. Both t...In assemblies constructed from components manufactured with radial deviations, cross-section deviations and deviations being combination of both, there occur variable values of local stresses and displacements. Both the types of shape deviations and their values need to be taken into account in the designing process and play an important role during machine operation. They have a crucial effect on the value and scatter of maximum reduced von Mises stresses and contact stresses. Axisymmetric joints were examined, in which shafts in selected shape variants and in variable angular positions were associated with a non-deformable hole. The aspects of contact zone problems are presented using the example of numerical simulation of contact between an elliptical saddle-shaped shaft placed in a rigid, non-deformable hole in different angular positions. Occurrence of both variable relative stresses and contact stresses as well as shaft's axial shift and rotary movement resistance were demonstrated.展开更多
A design procedure for improving the efficiency of a transonic compressor blading was proposed based on a rapid generation method for three-dimensional blade configuration and computational meshes, a three-dimensional...A design procedure for improving the efficiency of a transonic compressor blading was proposed based on a rapid generation method for three-dimensional blade configuration and computational meshes, a three-dimensional Navier-Stokes solver and an optimization approach. The objective of the present paper is to design a transonic compressor blading optimized only by selection of the locations of maximum camber and maximum thickness for the airfoils at different span heights and to study how do these two design parameters affect the blade performance. The blading configuration and the computational meshes can be obtained very rapidly for any given combination of maximum camber and maximum thickness. The computational grid system generated is used for the Navier-Stokes solution to predict adiabatic efficiency, total pressure ratio and flow rate. As a main result of the optimization, adiabatic efficiency was successfully improved.展开更多
基金Imam Khomeini International University(IKIU)for providing financial support during the research undertaken in the Civil Engineering Department at IKIU,Iran
文摘In recent years,a new type of foundation named composite piled raft foundation (also called long short composite piled raft) has been developed.Where designing shallow foundations would mean unacceptable settlement,or other environmental risks exist which could impair the structure in the future,composite piled raft foundations could be used.Finite element method was applied to study the behavior of this type of foundation subjected to vertical loading.In order to determine an optimal pile arrangement pattern which yields the minimum settlement,various pile arrangements under different vertical stress levels were investigated.Results show that with increasing the vertical stress on the raft,the effectiveness of the arrangements of short and long piles become more visible.In addition,a new factor named "composite piled raft efficiency" (CPRE) has been defined which determines the efficiency of long short piles arrangement in a composite piled raft foundation.This factor will increase when short piles take more axial stresses and long piles take less axial stresses.In addition,it is found that the changes in settlements for different long short piles arrangement are in a well agreement with changes in values of CPRE ratio.Thus,CPRE ratio can be used as a factor to determine the efficiency of piles arrangements in composite piled raft foundation from the view point of reducing raft settlements.
文摘One-dimensional pseudo-homogeneous model of an axial flow converter and one-dimensional heteroge-neous model of a horizontal converter have been presented, which describe the distribution of gaseous composition,temperature and pressure along the height in the two converters, respectively. Design optimization methods of the two converters have been proposed, by which the minimum catalyst volume can be obtained to satisfy the productive capacity of 1000 tons per day, when the operating pressure is 15.0, 10.0 and 7.5 MPa, respectively.
文摘Objective: To investigate the allocation and management of large medical equipment (LME) in Xuzhou, Jiangsu Province, China, in order to make the best use of LME to meet the medical needs of local people. Methods: The research collected data from all hospitals that have LME in Xuzhou using questionnaire; 38 (97.4%) hospitals returned the questionnaire. Results: In Xuzhou, there are a total of 71 pieces of LME, each serving 126 600 people in an area of 163 km2. Sixty-two percent of them are allocated in urban areas, with Gini coefficient at 0.52, indicating imbalance and biased allocation of LME. Conclusion: The al- location of LME in Xuzhou is out of control and unfairly allocated.
文摘In this paper, a novel design method, which is different from the traditional and empirical one (i. e., taking p and pv as the basic checking parameters) is presented for the fatigue strength design of dynamically loaded journal bearings. The method makes it possible that dynamically loaded bearings can be desed as same as other machine elements by stress-strength criterion. The practical design results show that the method has high accuracy and reliability, and may open a new visa in bearing fatigue designs.
文摘This paper presents the design assessment of concrete encased I-sections composite column based approaches given in Eurocode, ACI Code, BS Code and AISC-LRFD. This study includes comparison of various design parameters and evaluation of design strength based on the procedures predicted in the various codes of practices. A practical example has been assumed and calculation has been shown to evaluate their potentiality in understanding in predicting the potentiality of various procedures. The obtained results based on the methods varies widely, because of the different design considerations adopted by the different codes. As such, they have hardly considered the effect of confinement of the concrete due to the presence of longitudinal reinforcements as well as lateral ties. The study has attempted to throw light on critical review and their potentiality in assessing the strength of such concrete encased composite column under purely axial loads.
基金Sponsored by the National Natural Science Foundation of China (Grant No.50708027)National Key Technology R&D Program of China(Grant No.2006BAJ01B02)
文摘To study the behavior and design of tubed circular steel reinforced concrete (TCSRC) short column under axial compressive loads, a nonlinear finite element model (FEM) has been developed to simulate this kind of structure. Depending on the FEM results, an elastic-plastic analysis was carried out to clarify the status of steel tube, then a simplified procedure was proposed to predict the compressive axial load strength. The results obtained from this procedure were compared with the test results. It is found that they agree well each other.
基金National Key Project of Scientific and Technical Supporting Programs funded by Ministry of Science &Technology of China (No. 2006BAG04B00)
文摘The objective of this investigation was to study the behavior of deep pile caps and the ultimate load-carrying capacity. Four 1/10 scaled models of nine-pile caps were cast and tested on vertical loads to failure. The destruction shapes of pile caps,the correlation between load and displacement,and the internal stresses were analyzed systematically. The results demonstrated that the failures of all the four models are resulted from punching shear; the internal flow of the forces in nine-pile caps can be approximated by "strut-and-tie" model. Furthermore,the failure loads of these specimens were predicted by some of the present design methods and the calculated results were compared with the experimental loads. The comparative results also indicated that the "strut-and-tie" model is a more reasonable design method for deep pile caps design.
文摘In assemblies constructed from components manufactured with radial deviations, cross-section deviations and deviations being combination of both, there occur variable values of local stresses and displacements. Both the types of shape deviations and their values need to be taken into account in the designing process and play an important role during machine operation. They have a crucial effect on the value and scatter of maximum reduced von Mises stresses and contact stresses. Axisymmetric joints were examined, in which shafts in selected shape variants and in variable angular positions were associated with a non-deformable hole. The aspects of contact zone problems are presented using the example of numerical simulation of contact between an elliptical saddle-shaped shaft placed in a rigid, non-deformable hole in different angular positions. Occurrence of both variable relative stresses and contact stresses as well as shaft's axial shift and rotary movement resistance were demonstrated.
文摘A design procedure for improving the efficiency of a transonic compressor blading was proposed based on a rapid generation method for three-dimensional blade configuration and computational meshes, a three-dimensional Navier-Stokes solver and an optimization approach. The objective of the present paper is to design a transonic compressor blading optimized only by selection of the locations of maximum camber and maximum thickness for the airfoils at different span heights and to study how do these two design parameters affect the blade performance. The blading configuration and the computational meshes can be obtained very rapidly for any given combination of maximum camber and maximum thickness. The computational grid system generated is used for the Navier-Stokes solution to predict adiabatic efficiency, total pressure ratio and flow rate. As a main result of the optimization, adiabatic efficiency was successfully improved.