期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于SVMD与参数优化MCKD的轴承故障诊断
1
作者 钟先友 何流 赵潇 《机电工程》 CAS 北大核心 2024年第7期1179-1188,共10页
针对轴承故障信号存在噪声干扰,难以提取故障特征的问题,提出了一种将连续变分模态分解(SVMD)与改进的最大相关峭度反卷积(MCKD)相结合的轴承故障诊断方法。首先,为了表征轴承振动信号中的故障特征,将峭度与高斯核相结合,提出了比峭度... 针对轴承故障信号存在噪声干扰,难以提取故障特征的问题,提出了一种将连续变分模态分解(SVMD)与改进的最大相关峭度反卷积(MCKD)相结合的轴承故障诊断方法。首先,为了表征轴承振动信号中的故障特征,将峭度与高斯核相结合,提出了比峭度指标更为突出的加权峭度指标;其次,利用SVMD方法对轴承信号进行了分解,获得了若干模态分量,并使用加权峭度指标从多个模态分量中筛选出了故障特征最丰富的模态分量;然后,以包络熵为标准,通过几何平均优化器(GMO)优化MCKD的滤波器长度和周期两个参数,获得了最佳的参数组合;最后,采用GMO-MCKD方法对轴承信号进行了降噪,对降噪后的信号进行了包络分析,提取了轴承特征频率;同时,采用粒子群优化(PSO)的变分模态分解(VMD)和粒子群优化的变分模态提取(VME),对轴承信号进行了对照分析。研究结果表明:采用SVMD-GMO-MCKD方法在辛辛那提数据集中诊断出轴承特征频率为234.4 Hz及其二倍频;在西储大学轴承数据集中诊断出轴承特征频率为108.96 Hz,二倍频为218.09 Hz。该方法可以增强滚动轴承的周期性冲击成分,在有干扰的背景下有效地提取出滚动轴承内圈和外圈的故障特征,且轴承故障特征提取效果优于PSO-VMD和PSO-VME方法。 展开更多
关键词 噪声干扰 连续变分模态分解 最大相关峭度反卷积 几何平均优化器 故障特征提取效果 轴承特征频率
下载PDF
某船齿轮箱海水冷却水泵的故障诊断
2
作者 向志伟 姚欣鹏 《中国修船》 2024年第4期19-22,共4页
针对某船右齿轮箱海水冷却水泵振动异常故障,文章测量了该泵的振动速度和速度波形,通过加速度包络分析确定了振动激励源,从而发现故障原因是轴承损坏导致的泵组转子失衡,最后经更换轴承,排除了故障。
关键词 海水冷却水泵 固有频率 包络谱 轴承特征频率
下载PDF
状态检测故障诊断技术在冶金设备中的应用
3
作者 肖国亮 黄建新 《中国设备工程》 2018年第22期111-112,共2页
发挥状态检测故障诊断技术在设备故障诊断中的应用,快速诊断故障原因,提升检修效率,使关键设备向状态维修模式发展。
关键词 风机 轴承特征频率 轴承内环 频谱分析
下载PDF
Rolling element bearing instantaneous rotational frequency estimation based on EMD soft-thresholding denoising and instantaneous fault characteristic frequency 被引量:5
4
作者 赵德尊 李建勇 +2 位作者 程卫东 王天杨 温伟刚 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第7期1682-1689,共8页
The accurate estimation of the rolling element bearing instantaneous rotational frequency(IRF) is the key capability of the order tracking method based on time-frequency analysis. The rolling element bearing IRF can b... The accurate estimation of the rolling element bearing instantaneous rotational frequency(IRF) is the key capability of the order tracking method based on time-frequency analysis. The rolling element bearing IRF can be accurately estimated according to the instantaneous fault characteristic frequency(IFCF). However, in an environment with a low signal-to-noise ratio(SNR), e.g., an incipient fault or function at a low speed, the signal contains strong background noise that seriously affects the effectiveness of the aforementioned method. An algorithm of signal preprocessing based on empirical mode decomposition(EMD) and wavelet shrinkage was proposed in this work. Compared with EMD denoising by the cross-correlation coefficient and kurtosis(CCK) criterion, the method of EMD soft-thresholding(ST) denoising can ensure the integrity of the signal, improve the SNR, and highlight fault features. The effectiveness of the algorithm for rolling element bearing IRF estimation by EMD ST denoising and the IFCF was validated by both simulated and experimental bearing vibration signals at a low SNR. 展开更多
关键词 rolling element bearing low signal-to-noise ratio empirical mode decomposition soft-thresholding denoising instantaneous fault characteristic frequency instantaneous rotational frequency
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部