期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
深度概率优化的VAE轴承状态评估 被引量:2
1
作者 尹爱军 陈小敏 +1 位作者 谭建 王昱 《振动与冲击》 EI CSCD 北大核心 2021年第20期186-192,共7页
基于振动信号的VAE(variational auto-encoder,VAE)轴承状态评估方法,由于VAE近似后验分布简化高斯假设,其隐变量低维空间表示过于简单,往往无法捕捉到振动信号真实的潜在故障特征,且利用变分证据下界评估运行状态,存在估计不准确以及... 基于振动信号的VAE(variational auto-encoder,VAE)轴承状态评估方法,由于VAE近似后验分布简化高斯假设,其隐变量低维空间表示过于简单,往往无法捕捉到振动信号真实的潜在故障特征,且利用变分证据下界评估运行状态,存在估计不准确以及受样本数目影响较大等问题。研究分布变换优化VAE近似后验分布,利用优化采样算法优化计算VAE边缘概率密度,建立一种基于深度概率优化的VAE轴承状态评估模型。通过标准化流(normalizing flows)实现VAE中的分布优化,构造复杂灵活的近似后验分布,自适应学习健康状态下轴承振动信号频谱概率分布;采用AIS(annealed importance sampling,AIS)算法,通过一系列中间分布,采样完成边缘概率密度的优化计算,建立评价指标。滚动轴承对比实验表明,所提方法对滚动轴承退化过程更为敏感,证明了该方法在轴承状态评估中的有效性。 展开更多
关键词 深度概率优化 变分自编码器 标准化流 退火重要性采样 轴承状态评估
下载PDF
基于混合域相对特征和FOA-XGBoost滚动轴承退化评估 被引量:4
2
作者 刘晨辉 温广瑞 +2 位作者 苏宇 袁玉姣 黄鑫 《振动.测试与诊断》 EI CSCD 北大核心 2021年第5期880-887,1031,共9页
针对使用多域特征进行滚动轴承退化评估建模时准确度较低的问题,提出一种基于果蝇优化算法(fruit fly optimization algorithms,简称FOA)集成极限梯度提升树(extreme gradient boosting,简称XGBoost)的轴承退化状态评估方法。提取滚动... 针对使用多域特征进行滚动轴承退化评估建模时准确度较低的问题,提出一种基于果蝇优化算法(fruit fly optimization algorithms,简称FOA)集成极限梯度提升树(extreme gradient boosting,简称XGBoost)的轴承退化状态评估方法。提取滚动轴承全寿命周期的时域、频域及时频域等多维特征参数,构建混合域相对特征集,利用相对方均根值初始化轴承退化相应参数,进而利用混合域特征训练XGBoost模型并结合FOA算法对退化评估模型进行参数调优。结果表明:所构建的退化评估模型比常用的支持向量回归(support vactor regerssion,简称SVR)模型在2个数据集上的性能分别提高了27.15%和34.96%,所提方法可以准确有效地评估轴承退化状态。 展开更多
关键词 混合域相对特征集 果蝇优化算法 极限梯度提升树 轴承退化状态评估
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部