期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于VMD-LSTM的滚动轴承退化状态识别
被引量:
3
1
作者
魏永合
刘光昕
尹际雄
《沈阳理工大学学报》
CAS
2022年第1期1-6,13,共7页
针对滚动轴承退化信号的非平稳、非线性特点以及全寿命退化状态难以有效识别的问题,提出一种基于变分模态分解(VMD)和长短时记忆神经网络(LSTM)相结合的滚动轴承退化状态识别方法。该方法首先采用麻雀搜索算法(SSA)对VMD的两个参数(模...
针对滚动轴承退化信号的非平稳、非线性特点以及全寿命退化状态难以有效识别的问题,提出一种基于变分模态分解(VMD)和长短时记忆神经网络(LSTM)相结合的滚动轴承退化状态识别方法。该方法首先采用麻雀搜索算法(SSA)对VMD的两个参数(模态分量个数和惩罚因子)进行优化;然后将滚动轴承振动信号分解成若干个本征模态函数(IMF),再根据皮尔逊相关系数选择VMD分解得到的敏感IMF分量,对其重构后进行特征提取;最后将多维退化特征输入LSTM模型训练,建立退化状态模型。实验结果表明该方法能够准确识别轴承的退化状态,验证了该方法的优越性。
展开更多
关键词
轴承退化状态识别
麻雀搜索算法
变分模态分解
长短时记忆神经网络
下载PDF
职称材料
题名
基于VMD-LSTM的滚动轴承退化状态识别
被引量:
3
1
作者
魏永合
刘光昕
尹际雄
机构
沈阳理工大学机械工程学院
浙江清华柔性电子技术研究院
出处
《沈阳理工大学学报》
CAS
2022年第1期1-6,13,共7页
基金
国家自然科学基金资助项目(51875368)。
文摘
针对滚动轴承退化信号的非平稳、非线性特点以及全寿命退化状态难以有效识别的问题,提出一种基于变分模态分解(VMD)和长短时记忆神经网络(LSTM)相结合的滚动轴承退化状态识别方法。该方法首先采用麻雀搜索算法(SSA)对VMD的两个参数(模态分量个数和惩罚因子)进行优化;然后将滚动轴承振动信号分解成若干个本征模态函数(IMF),再根据皮尔逊相关系数选择VMD分解得到的敏感IMF分量,对其重构后进行特征提取;最后将多维退化特征输入LSTM模型训练,建立退化状态模型。实验结果表明该方法能够准确识别轴承的退化状态,验证了该方法的优越性。
关键词
轴承退化状态识别
麻雀搜索算法
变分模态分解
长短时记忆神经网络
Keywords
bearing degradation status identification
sparrow search algorithm
variational mode decomposition
long and short term memory neural network
分类号
TH133 [机械工程—机械制造及自动化]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于VMD-LSTM的滚动轴承退化状态识别
魏永合
刘光昕
尹际雄
《沈阳理工大学学报》
CAS
2022
3
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部