Isotropic consolidation test and consolidated-undrained triaxial test were first undertaken to obtain the parameters of the modified cam-clay(MCC)model and the behavior of natural clayey soil.Then,for the first time,n...Isotropic consolidation test and consolidated-undrained triaxial test were first undertaken to obtain the parameters of the modified cam-clay(MCC)model and the behavior of natural clayey soil.Then,for the first time,numerical simulation of the two tests was performed by three-dimensional finite element method(FEM)using ABAQUS program.The consolidated-drained triaxial test was also simulated by FEM and compared with theoretical results of MCC model.Especially,the behaviors of MCC model during unloading and reloading were analyzed in detail by FEM.The analysis and comparison indicate that the MCC model is able to accurately describe many features of the mechanical behavior of the soil in isotropic consolidation test and consolidated-drained triaxial test.And the MCC model can well describe the variation of excess pore water pressure with the development of axial strain in consolidated-undrained triaxial test,but its ability to predict the relationship between axial strain and shear stress is relatively poor.The comparison also shows that FEM solutions of the MCC model are basically identical to the theoretical ones.In addition,Mandel-Cryer effect unable to be discovered by the conventional triaxial test in laboratories was disclosed by FEM.The analysis of unloading-reloading by FEM demonstrates that the MCC model disobeys the law of energy conservation under the cyclic loading condition if the elastic shear modulus is linearly pressure-dependent.展开更多
By using Galerkin’s method, the finite element formulation is made for axisymmtric heat transfer problems for anisotropic materials from the heat transfer differential equations expressed in terms of heat fluid densi...By using Galerkin’s method, the finite element formulation is made for axisymmtric heat transfer problems for anisotropic materials from the heat transfer differential equations expressed in terms of heat fluid density. Results of an example show that the heat transfer anisotropy has an important effect on temperature field.展开更多
The lorentz force-type magnetic bearing(LFTMB)with good linearity is suitable for the high-precision deflection control of the magnetically suspended gyrowheel(MSGW). Two kinds of novel implicit LFTMBs are proposed in...The lorentz force-type magnetic bearing(LFTMB)with good linearity is suitable for the high-precision deflection control of the magnetically suspended gyrowheel(MSGW). Two kinds of novel implicit LFTMBs are proposed in allusion to the poor magnetic flux density uniformity of the existing explicit LFTMB. The improvement of uniformity is realized under the paramagnetic contribution of magnetic ring. Their structures are introduced,the mathematical models are established based on the equivalent magnetic circuit method and the magnetic fields are analyzed by the finite element method based on the design parameters. Simulation results indicate that the magnetic flux density uniformity of implicit LFTMBs is superior to the traditional explicit LFTMB. Furthermore,the implicit trapezoid LFTMB with double magnetic circuits is better than that of those with single magnetic circuit,in terms of the magnetic flux density uniformity and the magnetic flux density. The magnetic flux density of implicit trapezoid double magnetic circuits LFTMB is verified by the experiment. The error between the experimental results and the simulation results is within 5%,which shows that the implicit trapezoid double magnetic circuits LFTMB is promising to meet the high-precision agile maneuver requirement of the magnetically suspended gyrowheel.展开更多
In this work the authors present a calculation process of the blades for wind turbine with horizontal axis. It is about a blade discretized by the finite element method (FEM) in order to determine the gyroscopic eff...In this work the authors present a calculation process of the blades for wind turbine with horizontal axis. It is about a blade discretized by the finite element method (FEM) in order to determine the gyroscopic effect during its rotation at a high speed. A blade must have the maximum output and resist to aerodynamic loads distributed over its length, which are related to its geometrical characteristics and the speed of the wind. For that, the authors wrote the relations whom determine these loads according to the flow speed of the wind, then, the authors integrated them in the laws of structure mechanics to obtain the motion equations of the blade. This process was applied to a twisted blade with a length of 1.9 m, built out of pressed aluminum sheet with a profile of the type NACA; this profile gives the best aerodynamic output. This blade is an element of a three-bladed propeller for wind turbine of maximum power 5 kW. Finally, we visualized its deformations and then the authors checked its holding in service.展开更多
In roller bearings, the outer ring is usually fixed and the inner ring has the rolling motion. Concerning TRB (tapered roller bearings), this motion generates forces that are transmitted to the outer ring by the tap...In roller bearings, the outer ring is usually fixed and the inner ring has the rolling motion. Concerning TRB (tapered roller bearings), this motion generates forces that are transmitted to the outer ring by the tapered rollers. Thus, contact stresses occur and the number of rollers plays a major role with respect to the load distribution. This influence is analyzed in this study by the FEM (finite element method) with commercial code ABAQUS, where two models were evaluated: a common TRB and the same one but with fewer rollers. As an application, a manual automotive transmission was considered for the input loads.展开更多
In this paper, the failure mechanisms of full-size concrete filled steel tubes(CFST) under uniaxial compression were investigated with nonlinear finite element method. Existing experimental results were employed to ve...In this paper, the failure mechanisms of full-size concrete filled steel tubes(CFST) under uniaxial compression were investigated with nonlinear finite element method. Existing experimental results were employed to verify the validity of the finite element models of CFST specimens. Then, the numerical analysis was further conducted to study the mechanical behaviors of full-size CFST columns with circular and square cross sections under uniaxial compression. The simulation results indicate that the distribution of the contact pressure between circular steel tube and core concrete is much more uniform than that between square steel tube and concrete, resulting in much higher confinement and more efficient interaction between steel tube and core concrete in circular CFST columns, as well as ultimate load capacity and ultimate displacement. Extensive parametric analysis was also conducted to examine the effect of various parameters on the uniaxial compression behaviors of circular and square CFST columns.展开更多
基金Project(2011J01308) supported by the Natural Science Foundation of Fujian Province,China
文摘Isotropic consolidation test and consolidated-undrained triaxial test were first undertaken to obtain the parameters of the modified cam-clay(MCC)model and the behavior of natural clayey soil.Then,for the first time,numerical simulation of the two tests was performed by three-dimensional finite element method(FEM)using ABAQUS program.The consolidated-drained triaxial test was also simulated by FEM and compared with theoretical results of MCC model.Especially,the behaviors of MCC model during unloading and reloading were analyzed in detail by FEM.The analysis and comparison indicate that the MCC model is able to accurately describe many features of the mechanical behavior of the soil in isotropic consolidation test and consolidated-drained triaxial test.And the MCC model can well describe the variation of excess pore water pressure with the development of axial strain in consolidated-undrained triaxial test,but its ability to predict the relationship between axial strain and shear stress is relatively poor.The comparison also shows that FEM solutions of the MCC model are basically identical to the theoretical ones.In addition,Mandel-Cryer effect unable to be discovered by the conventional triaxial test in laboratories was disclosed by FEM.The analysis of unloading-reloading by FEM demonstrates that the MCC model disobeys the law of energy conservation under the cyclic loading condition if the elastic shear modulus is linearly pressure-dependent.
文摘By using Galerkin’s method, the finite element formulation is made for axisymmtric heat transfer problems for anisotropic materials from the heat transfer differential equations expressed in terms of heat fluid density. Results of an example show that the heat transfer anisotropy has an important effect on temperature field.
基金supported by Beijing Municipal Natural Science Foundation (General Program) (No. 3212004)Cultivation Project of Important Scientific Research Achievements of Beijing Institute of Petrochemical Technology(No. BIPTACF-007)
文摘The lorentz force-type magnetic bearing(LFTMB)with good linearity is suitable for the high-precision deflection control of the magnetically suspended gyrowheel(MSGW). Two kinds of novel implicit LFTMBs are proposed in allusion to the poor magnetic flux density uniformity of the existing explicit LFTMB. The improvement of uniformity is realized under the paramagnetic contribution of magnetic ring. Their structures are introduced,the mathematical models are established based on the equivalent magnetic circuit method and the magnetic fields are analyzed by the finite element method based on the design parameters. Simulation results indicate that the magnetic flux density uniformity of implicit LFTMBs is superior to the traditional explicit LFTMB. Furthermore,the implicit trapezoid LFTMB with double magnetic circuits is better than that of those with single magnetic circuit,in terms of the magnetic flux density uniformity and the magnetic flux density. The magnetic flux density of implicit trapezoid double magnetic circuits LFTMB is verified by the experiment. The error between the experimental results and the simulation results is within 5%,which shows that the implicit trapezoid double magnetic circuits LFTMB is promising to meet the high-precision agile maneuver requirement of the magnetically suspended gyrowheel.
文摘In this work the authors present a calculation process of the blades for wind turbine with horizontal axis. It is about a blade discretized by the finite element method (FEM) in order to determine the gyroscopic effect during its rotation at a high speed. A blade must have the maximum output and resist to aerodynamic loads distributed over its length, which are related to its geometrical characteristics and the speed of the wind. For that, the authors wrote the relations whom determine these loads according to the flow speed of the wind, then, the authors integrated them in the laws of structure mechanics to obtain the motion equations of the blade. This process was applied to a twisted blade with a length of 1.9 m, built out of pressed aluminum sheet with a profile of the type NACA; this profile gives the best aerodynamic output. This blade is an element of a three-bladed propeller for wind turbine of maximum power 5 kW. Finally, we visualized its deformations and then the authors checked its holding in service.
文摘In roller bearings, the outer ring is usually fixed and the inner ring has the rolling motion. Concerning TRB (tapered roller bearings), this motion generates forces that are transmitted to the outer ring by the tapered rollers. Thus, contact stresses occur and the number of rollers plays a major role with respect to the load distribution. This influence is analyzed in this study by the FEM (finite element method) with commercial code ABAQUS, where two models were evaluated: a common TRB and the same one but with fewer rollers. As an application, a manual automotive transmission was considered for the input loads.
基金supported by the National Natural Science Foundation of China(Grant No.51278118)the Natural Science Foundation of Jiangsu Province(Grant No.BK2012756)the Scientific Research Project of Ministry of Education(Grant No.113029A)
文摘In this paper, the failure mechanisms of full-size concrete filled steel tubes(CFST) under uniaxial compression were investigated with nonlinear finite element method. Existing experimental results were employed to verify the validity of the finite element models of CFST specimens. Then, the numerical analysis was further conducted to study the mechanical behaviors of full-size CFST columns with circular and square cross sections under uniaxial compression. The simulation results indicate that the distribution of the contact pressure between circular steel tube and core concrete is much more uniform than that between square steel tube and concrete, resulting in much higher confinement and more efficient interaction between steel tube and core concrete in circular CFST columns, as well as ultimate load capacity and ultimate displacement. Extensive parametric analysis was also conducted to examine the effect of various parameters on the uniaxial compression behaviors of circular and square CFST columns.