The combined effects of swirl and circumferential inlet flow distortion on the flow field of an axial flow fan stage are reported in this paper. The study involves measurements at the inlet of the rotor and exit of th...The combined effects of swirl and circumferential inlet flow distortion on the flow field of an axial flow fan stage are reported in this paper. The study involves measurements at the inlet of the rotor and exit of the rotor and stator at design and off design now conditions. The study indicated that at the design flow condition, swirl had caused deterioration of the performance in addition to that caused by distortfou. Pressure rise imparted in the distortion zone is higher than in the free zone. The attenuation of distortion is high in the presence of swirl.展开更多
Ice accretion is the phenomenon that super-cooled water droplets impinge and accrete on a body. It is well known that ice accretion on blades and airfoils leads to performance degradation and severe accidents. For thi...Ice accretion is the phenomenon that super-cooled water droplets impinge and accrete on a body. It is well known that ice accretion on blades and airfoils leads to performance degradation and severe accidents. For this reason, experimental investigations have been carried out using flight tests or icing tunnels. However, it is too expensive, dangerous, and difficult to set actual icing conditions. Hence, computational fluid dynamics is useful to predict ice accretion. A rotor blade is one of jet engine components where ice accretes. Therefore, the authors focus on the ice accretion on a rotor blade in this study. Three-dimensional icing phenomena on the rotor blade of a commercial axial blower are computed here, and ice accretion on the rotor blade is numerically investigated.展开更多
Compared with single rotor small axial flow fans, dual-rotor small axial flow fans is better regarding the static characteristics. But the aerodynamic noise of dual-rotor small axial flow fans is worse than that of si...Compared with single rotor small axial flow fans, dual-rotor small axial flow fans is better regarding the static characteristics. But the aerodynamic noise of dual-rotor small axial flow fans is worse than that of single rotor small axial flow fans. In order to improve aerodynamic noise of dual-rotor small axial flow fans, the pre-stage blades with different perforation numbers are designed in this research. The RANS equations and the standard k-e turbulence model as well as the FW-H noise model are used to simulate the flow field within the fan. Then, the aerodynamic performance of the fans with different perforation number is compared and analyzed. The results show that: (1) Compared to the prototype fan, the noise of fans with perforation blades is reduced. Additionally, the noise of the fans decreases with the increase of the number of perforations. (2) The vorticity value in the trailing edge of the pre-stage blades of perforated fans is reduced. It is found that the vorticity value in the trailing edge of the pre-stage blades decreases with the increase of the number of perforations. (3) Compared to the prototype fan, the total pressure rising and efficiency of the fans with perforation blades drop slightly.展开更多
文摘The combined effects of swirl and circumferential inlet flow distortion on the flow field of an axial flow fan stage are reported in this paper. The study involves measurements at the inlet of the rotor and exit of the rotor and stator at design and off design now conditions. The study indicated that at the design flow condition, swirl had caused deterioration of the performance in addition to that caused by distortfou. Pressure rise imparted in the distortion zone is higher than in the free zone. The attenuation of distortion is high in the presence of swirl.
文摘Ice accretion is the phenomenon that super-cooled water droplets impinge and accrete on a body. It is well known that ice accretion on blades and airfoils leads to performance degradation and severe accidents. For this reason, experimental investigations have been carried out using flight tests or icing tunnels. However, it is too expensive, dangerous, and difficult to set actual icing conditions. Hence, computational fluid dynamics is useful to predict ice accretion. A rotor blade is one of jet engine components where ice accretes. Therefore, the authors focus on the ice accretion on a rotor blade in this study. Three-dimensional icing phenomena on the rotor blade of a commercial axial blower are computed here, and ice accretion on the rotor blade is numerically investigated.
基金supported by National Natural Science Foundation of China(No.51276172)
文摘Compared with single rotor small axial flow fans, dual-rotor small axial flow fans is better regarding the static characteristics. But the aerodynamic noise of dual-rotor small axial flow fans is worse than that of single rotor small axial flow fans. In order to improve aerodynamic noise of dual-rotor small axial flow fans, the pre-stage blades with different perforation numbers are designed in this research. The RANS equations and the standard k-e turbulence model as well as the FW-H noise model are used to simulate the flow field within the fan. Then, the aerodynamic performance of the fans with different perforation number is compared and analyzed. The results show that: (1) Compared to the prototype fan, the noise of fans with perforation blades is reduced. Additionally, the noise of the fans decreases with the increase of the number of perforations. (2) The vorticity value in the trailing edge of the pre-stage blades of perforated fans is reduced. It is found that the vorticity value in the trailing edge of the pre-stage blades decreases with the increase of the number of perforations. (3) Compared to the prototype fan, the total pressure rising and efficiency of the fans with perforation blades drop slightly.