期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
轴流叶片非接触式模态特性测试系统的开发与研究
1
作者 宁宝奇 李朝峰 +2 位作者 杨树华 孟继纲 李凯华 《航空发动机》 2017年第6期76-83,共8页
为了克服目前常用的锤击测试方法在高频区域振动衰减过快、常规的激振及拾振器常采用接触方式使误差增大、以及对测试人员敲击技巧要求高等缺点,基于时域方法开发了轴流叶片激振和拾振均为非接触设备的模态测试系统。该系统采用Lab VIE... 为了克服目前常用的锤击测试方法在高频区域振动衰减过快、常规的激振及拾振器常采用接触方式使误差增大、以及对测试人员敲击技巧要求高等缺点,基于时域方法开发了轴流叶片激振和拾振均为非接触设备的模态测试系统。该系统采用Lab VIEW平台开发,除了具备测试轴流叶片的固有频率及振型功能外,基于频域带宽法和最小二乘法开发了模态阻尼及比例阻尼系数的辨识功能。该测试系统具有持续扫频激励的特点,可避免高频振动信号衰减过快而无法被准确测到的缺陷,同时它还具有无限次同工况重复及多点测试的优点,可避免测试中的漏频现象。研究结果表明:该测试系统能准确地测试出轴流叶片50~11000Hz内的模态特性,固有频率测试结果与锤击法的测试结果对比的相对误差均在0.6%以内,模态阻尼比测试结果自身对比的最大相对误差均在1%以下,比例阻尼系数求解误差都在可接受范围内。 展开更多
关键词 轴流转子叶片 非接触测量 共振法 模态特性 固有频率 模态阻尼比
下载PDF
Investigations on an Axial Flow Fan Stage subjected to Circumferential Inlet Flow Distortion and Swirl 被引量:20
2
作者 M. Govardhan K. Viswanath (Thermal Turbomachines Laboratory Department of Mechanical Engineering, Indian Institute of Technology, Madras 600 036, India ) 《Journal of Thermal Science》 SCIE EI CAS CSCD 1997年第4期241-250,共10页
The combined effects of swirl and circumferential inlet flow distortion on the flow field of an axial flow fan stage are reported in this paper. The study involves measurements at the inlet of the rotor and exit of th... The combined effects of swirl and circumferential inlet flow distortion on the flow field of an axial flow fan stage are reported in this paper. The study involves measurements at the inlet of the rotor and exit of the rotor and stator at design and off design now conditions. The study indicated that at the design flow condition, swirl had caused deterioration of the performance in addition to that caused by distortfou. Pressure rise imparted in the distortion zone is higher than in the free zone. The attenuation of distortion is high in the presence of swirl. 展开更多
关键词 circumferential distortion SWIRL inlet guide vanes distortion index
原文传递
Numerical Simulation of Ice Accretion Phenomena on Rotor Blade of Axial Blower 被引量:1
3
作者 Taiki Matsuura Masaya Suzuki +3 位作者 Makoto Yamamoto Shinichiro Shishido Takeshi Murooka Hiroshi Miyagawa 《Journal of Thermal Science》 SCIE EI CAS CSCD 2012年第4期322-326,共5页
Ice accretion is the phenomenon that super-cooled water droplets impinge and accrete on a body. It is well known that ice accretion on blades and airfoils leads to performance degradation and severe accidents. For thi... Ice accretion is the phenomenon that super-cooled water droplets impinge and accrete on a body. It is well known that ice accretion on blades and airfoils leads to performance degradation and severe accidents. For this reason, experimental investigations have been carried out using flight tests or icing tunnels. However, it is too expensive, dangerous, and difficult to set actual icing conditions. Hence, computational fluid dynamics is useful to predict ice accretion. A rotor blade is one of jet engine components where ice accretes. Therefore, the authors focus on the ice accretion on a rotor blade in this study. Three-dimensional icing phenomena on the rotor blade of a commercial axial blower are computed here, and ice accretion on the rotor blade is numerically investigated. 展开更多
关键词 ICING Computational Fluid Dynamics Euler-Lagrangian Coupling Rotor Blade Axial Blower
原文传递
Effects of Perforation Number of Blade on Aerodynamic Performance of Dual-rotor Small Axial Flow Fans
4
作者 HU Yongjun WANG Yanping +3 位作者 LI Guoqi JIN Yingzi Toshiaki Setoguchi Heuy Dong Kim 《Journal of Thermal Science》 SCIE EI CAS CSCD 2015年第2期123-130,共8页
Compared with single rotor small axial flow fans, dual-rotor small axial flow fans is better regarding the static characteristics. But the aerodynamic noise of dual-rotor small axial flow fans is worse than that of si... Compared with single rotor small axial flow fans, dual-rotor small axial flow fans is better regarding the static characteristics. But the aerodynamic noise of dual-rotor small axial flow fans is worse than that of single rotor small axial flow fans. In order to improve aerodynamic noise of dual-rotor small axial flow fans, the pre-stage blades with different perforation numbers are designed in this research. The RANS equations and the standard k-e turbulence model as well as the FW-H noise model are used to simulate the flow field within the fan. Then, the aerodynamic performance of the fans with different perforation number is compared and analyzed. The results show that: (1) Compared to the prototype fan, the noise of fans with perforation blades is reduced. Additionally, the noise of the fans decreases with the increase of the number of perforations. (2) The vorticity value in the trailing edge of the pre-stage blades of perforated fans is reduced. It is found that the vorticity value in the trailing edge of the pre-stage blades decreases with the increase of the number of perforations. (3) Compared to the prototype fan, the total pressure rising and efficiency of the fans with perforation blades drop slightly. 展开更多
关键词 dual-rotor small axial flow fans the blade with perforation perforation number aerodynamic per-formance
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部