Holistic tin-plating on the outer conductor is one of the key processes in the manufacture of semi-flexible coaxial cable, which is widely applied to the third generation (3G) mobile communication system. However, in ...Holistic tin-plating on the outer conductor is one of the key processes in the manufacture of semi-flexible coaxial cable, which is widely applied to the third generation (3G) mobile communication system. However, in the traditional horizontal tin-plating process, disadvantages such as the pinhole defects and low productivity effect cannot be avoided. In this paper, a vertical tin-plating process was proposed to reduce the pinhole defects and improve the tincoating quality. Compared with the traditional horizontal tin-plating process, the immersion length was reduced from 300-400 mm to 10-100 mm and the tin-plating time was reduced from 7 s to 3 s in the proposed method. The experimental results indicate that immersion length and time are key parameters for the tin-plating quality. With this new tin-plating process, the experimental results show that the pinhole defects can be eliminated effectively by controlling the immersion depth below 100 mm and tin-plating time at 3 s. The thickness of tin-coating increased from not more than 5 μm to 12.3 μm with the proposed vertical tin-plating process. Meanwhile, the thickness of the intermetallic compounds (IMCs) layer between the tin-coating and copper wires was reduced from 3.26 μm to 0.62 μm if the immersion time decreased from 30 s to 1 s. Besides, a self-developed flux, which possesses a boiling point or decomposed temperature of active components over 300℃, exhibits a better efficiency in reducing the pinhole formation.展开更多
Experimental investigation was carried out in an elliptical based stirred tank with a diameter of 0.48 m to explore the power demand and mixing performance of coaxial mixers.Syrup and CMC solution(sodium carboxy methy...Experimental investigation was carried out in an elliptical based stirred tank with a diameter of 0.48 m to explore the power demand and mixing performance of coaxial mixers.Syrup and CMC solution(sodium carboxy methyl cellulose)were used as the Newtonian and non-Newtonian fluids,respectively.Four different coaxial mixers were combined with either CBY or Pfaudler impeller as the inner one,and anchor or helical ribbon(HR)as the outer one.Results show that Pfaudler-HR is the optimized combination among four coaxial mixers in this work,which provides the shortest mixing time given the same power consumption.Compared with the syrup solution,the increase of power input can make the mixing time decreasing more obviously in the CMC solution.The quantitative correlations for both syrup and CMC solutions were established to calculate the power draw and the mixing time of four coaxial mixers.展开更多
To increase the limit of ethernet over coax (EoC) technology in the bidirectional reform of the hybrid fiber coaxial (HFC) network, an ethernet passive electronic network (EPEN) system based on Coax is proposed ...To increase the limit of ethernet over coax (EoC) technology in the bidirectional reform of the hybrid fiber coaxial (HFC) network, an ethernet passive electronic network (EPEN) system based on Coax is proposed and experimentally demonstrated in this paper. The proposed EPEN exploits the existing capabilities of the MAC layer in the ethernet passive optical network (EPON) for reduction of cost of the HFC network. As the MPCP (multi-point control protocol) is introduced in the EPEN, bandwidth control and higher efficiency can be achieved. The experimental results exhibit the throughput of system up to 100Mbps, which meet the requirements of HFC network. To improve the performance of EPEN, frequency division multiplexing (FDM) can be used for further increase of the throughput and more hardware processing modules in the future. can be implemented to enhance the capacity展开更多
Mechanical model and vibration equation of a cable in cable-stayed space latticed structure (CSLS) under external axial excitation were founded.Determination of the mass lumps and natural frequencies sup- plied by the...Mechanical model and vibration equation of a cable in cable-stayed space latticed structure (CSLS) under external axial excitation were founded.Determination of the mass lumps and natural frequencies sup- plied by the space latticed structure (SLS) was analyzed.Multiple scales method (MSM) was introduced to analyze the characteristics of cable's parametric vibration,and the precise time-integration method (PTIM) was used to solve vibration equation.The vibration behavior of a cable is closely relative to the frequency ratio of the cable and SLS.The cable's parametric vibration caused by the external axial excitation easily occurs if the frequency ratio of the cable and SLS is in a certain range,and the cable's vibration amplitude varies greatly even if the initial disturbance supplied by SLS changes a little.Furthermore,the mechanical model and vibration equation of the composite cable system consisting of main cables and assistant cables were studied. The parametric analysis such as the pre-tension level and arrangement of the assistant cables was carried out. Due to the assistant cables,the single-cable vibration mode can be transferred to the global vibration mode, and the stiffness and damping of the cable system are enhanced.The natural frequencies of the composite cable system with the curve line arrangement of assistant cables are higher than those with the straight-line arrangement and the former is more effective than the latter on the cable's vibration suppression.展开更多
The line-shape of catwalk of long-span suspension bridge is obtained by using the segmental catenary method to carry out the iterative calculation, where all the bearing cables are considered as one cable, and transve...The line-shape of catwalk of long-span suspension bridge is obtained by using the segmental catenary method to carry out the iterative calculation, where all the bearing cables are considered as one cable, and transversal passages and gantry are treated as nodes which divide the catwalk into several segments. The difference of line-shape and force between catwalk bearing cable and gantry bearing cable is not usually considered, but the line-shape of two kinds of cables is actually inconsistent because of the constraints from gantries. Based on the segmental catenary method, considering the different states of bearing cables ( DSB calculation method), fine calculation is carried out. This method is applied to the design of a suspension bridge' s catwalk, and is compared with the traditional calculation method. It is obtained that the result is more reasonable and accurate by the coordination calculation method considering different states for two kinds of load-bearing cables, which is worth considering in the nrocess of design and optimization for catwalk.展开更多
基金Supported by Science and Technology Support Project of Tianjin Science and Technology Commission (No.10ZCKFGX3500)
文摘Holistic tin-plating on the outer conductor is one of the key processes in the manufacture of semi-flexible coaxial cable, which is widely applied to the third generation (3G) mobile communication system. However, in the traditional horizontal tin-plating process, disadvantages such as the pinhole defects and low productivity effect cannot be avoided. In this paper, a vertical tin-plating process was proposed to reduce the pinhole defects and improve the tincoating quality. Compared with the traditional horizontal tin-plating process, the immersion length was reduced from 300-400 mm to 10-100 mm and the tin-plating time was reduced from 7 s to 3 s in the proposed method. The experimental results indicate that immersion length and time are key parameters for the tin-plating quality. With this new tin-plating process, the experimental results show that the pinhole defects can be eliminated effectively by controlling the immersion depth below 100 mm and tin-plating time at 3 s. The thickness of tin-coating increased from not more than 5 μm to 12.3 μm with the proposed vertical tin-plating process. Meanwhile, the thickness of the intermetallic compounds (IMCs) layer between the tin-coating and copper wires was reduced from 3.26 μm to 0.62 μm if the immersion time decreased from 30 s to 1 s. Besides, a self-developed flux, which possesses a boiling point or decomposed temperature of active components over 300℃, exhibits a better efficiency in reducing the pinhole formation.
文摘Experimental investigation was carried out in an elliptical based stirred tank with a diameter of 0.48 m to explore the power demand and mixing performance of coaxial mixers.Syrup and CMC solution(sodium carboxy methyl cellulose)were used as the Newtonian and non-Newtonian fluids,respectively.Four different coaxial mixers were combined with either CBY or Pfaudler impeller as the inner one,and anchor or helical ribbon(HR)as the outer one.Results show that Pfaudler-HR is the optimized combination among four coaxial mixers in this work,which provides the shortest mixing time given the same power consumption.Compared with the syrup solution,the increase of power input can make the mixing time decreasing more obviously in the CMC solution.The quantitative correlations for both syrup and CMC solutions were established to calculate the power draw and the mixing time of four coaxial mixers.
基金Supported by the National High Technology Research and Development Program of China(No.2007AA01Z229)
文摘To increase the limit of ethernet over coax (EoC) technology in the bidirectional reform of the hybrid fiber coaxial (HFC) network, an ethernet passive electronic network (EPEN) system based on Coax is proposed and experimentally demonstrated in this paper. The proposed EPEN exploits the existing capabilities of the MAC layer in the ethernet passive optical network (EPON) for reduction of cost of the HFC network. As the MPCP (multi-point control protocol) is introduced in the EPEN, bandwidth control and higher efficiency can be achieved. The experimental results exhibit the throughput of system up to 100Mbps, which meet the requirements of HFC network. To improve the performance of EPEN, frequency division multiplexing (FDM) can be used for further increase of the throughput and more hardware processing modules in the future. can be implemented to enhance the capacity
基金The National Natural Science Foundation of China(No.10572091)The Key Project of Fund of Science and Technology Development of Shanghai(No.07JC14023)
文摘Mechanical model and vibration equation of a cable in cable-stayed space latticed structure (CSLS) under external axial excitation were founded.Determination of the mass lumps and natural frequencies sup- plied by the space latticed structure (SLS) was analyzed.Multiple scales method (MSM) was introduced to analyze the characteristics of cable's parametric vibration,and the precise time-integration method (PTIM) was used to solve vibration equation.The vibration behavior of a cable is closely relative to the frequency ratio of the cable and SLS.The cable's parametric vibration caused by the external axial excitation easily occurs if the frequency ratio of the cable and SLS is in a certain range,and the cable's vibration amplitude varies greatly even if the initial disturbance supplied by SLS changes a little.Furthermore,the mechanical model and vibration equation of the composite cable system consisting of main cables and assistant cables were studied. The parametric analysis such as the pre-tension level and arrangement of the assistant cables was carried out. Due to the assistant cables,the single-cable vibration mode can be transferred to the global vibration mode, and the stiffness and damping of the cable system are enhanced.The natural frequencies of the composite cable system with the curve line arrangement of assistant cables are higher than those with the straight-line arrangement and the former is more effective than the latter on the cable's vibration suppression.
文摘The line-shape of catwalk of long-span suspension bridge is obtained by using the segmental catenary method to carry out the iterative calculation, where all the bearing cables are considered as one cable, and transversal passages and gantry are treated as nodes which divide the catwalk into several segments. The difference of line-shape and force between catwalk bearing cable and gantry bearing cable is not usually considered, but the line-shape of two kinds of cables is actually inconsistent because of the constraints from gantries. Based on the segmental catenary method, considering the different states of bearing cables ( DSB calculation method), fine calculation is carried out. This method is applied to the design of a suspension bridge' s catwalk, and is compared with the traditional calculation method. It is obtained that the result is more reasonable and accurate by the coordination calculation method considering different states for two kinds of load-bearing cables, which is worth considering in the nrocess of design and optimization for catwalk.